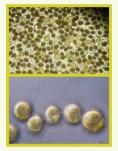


Biodiversamente consapevoli

BARBARA CRESTANELLO

Dipartimento di Biodiversità ed Ecologia Molecolare Gruppo Genetica della Conservazione


http://congen.fem-environment.eu/barbara.crestanello@fmach.it

GRUPPO GENETICA DELLA CONSERVAZIONE

Coinvolto nello studio e nella conservazione di taxa a rischio/enedemici e/o gestiti nelle Alpi

Specie studiate:

Alghe

Piante

Pesci

Anfibi

Rettili

Tetraonidi e coturnici

Micro mammiferi

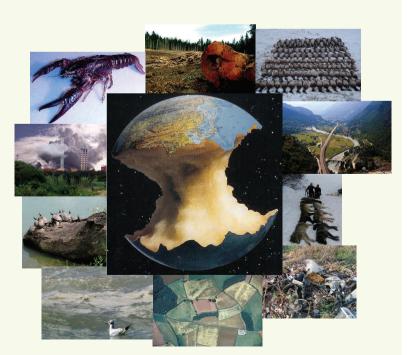
Lagomorfi

Ungulati

Obbiettivi:

- Rilevare precocemente potenziali situazioni di rischio
- Fornire informazioni per l'attuazione di programmi di conservazione e gestione
- Preservare le specie come entità dinamiche in grado di affrontare i cambiamenti ambientali

Biodiversità e gestione

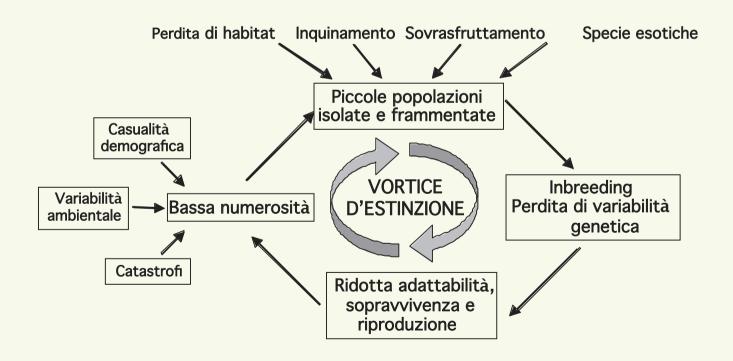

Problemi:

- > Perdita di biodiversità
- > Allarmante aumento del tasso di estinzione delle specie (21% degli animali vertebrati, il 31% degli invertebrati ed il 68% delle specie vegetali sono "minacciate")

SESTA ESTINZIONE DI MASSA

Cause principali legate all'uomo:

- > Frammentazione e distruzione degli habitat
- > Introduzione di specie esotiche
- > Eccessivo sfruttamento
- > Inquinamento



Le popolazioni naturali diventano più suscettibili a:

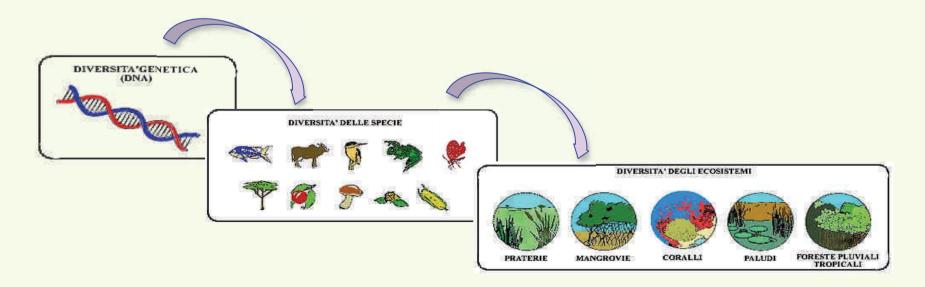
Fattori stocastici (non prevedibili)

- ambientale
- catastrofico
- demografico
- genetico

Variabilità genetica correlata con la salute delle popolazioni

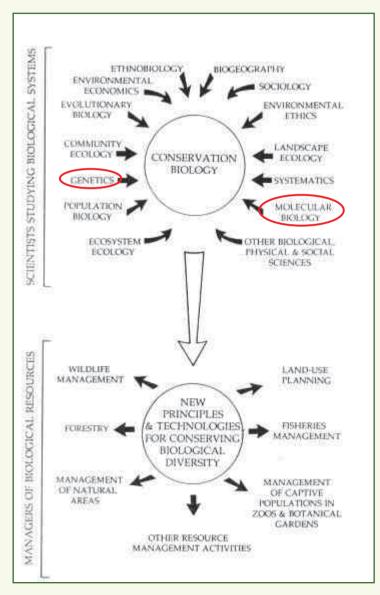
Nelle popolazioni piccole ed isolate la variabilità genetica tende a diminuire

Bassa diversità genetica testimone di una situazione generale di sofferenza:


- bassa adattabilità a cambiamenti ambientali
- minore resistenza a patogeni e parassiti
- aumento delle malattie di origine genetica
- diminuzione della sopravvivenza
- diminuzione dei tassi riproduttivi

•

Preservare la diversità genetica è una priorità gestionale



- La diversità genetica è riconosciuta come un elemento chiave della biodiversità
 - La diversità biologica è composta dalle differenze genetiche dentro la specie, la diversità delle specie e la varietà degli ecosistemi (Convenzione sulla Diversità Biologica, CBD)
 - Tre livelli di biodiversità:
 - Diversità genetica: fra individui e popolazione
 - Diversità delle specie
 - Diversità degli ecosistemi

Soluzioni:

• Programmi multidisciplinari di gestione e conservazione di popolazioni naturali o in cattività (dati ecologici, demografici, comportamentali, fisiologici e genetici).

1970 - Primi studi di conservazione

1980 - La "Biologia della Conservazione" diventa una "disciplina"

Genetica della conservazione

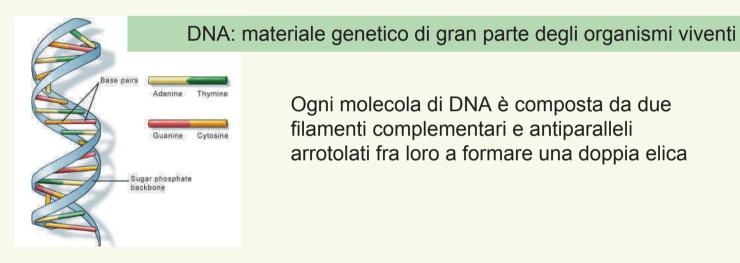
Contribuisce alla gestione e alla salvaguardia delle popolazioni naturali utilizzando gli strumenti e i concetti della **genetica** e della **biologia molecolare**

Metodo:

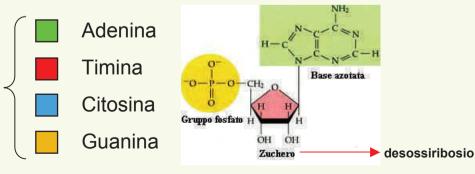
Analisi della variabilità presente a livello di DNA

Scopo

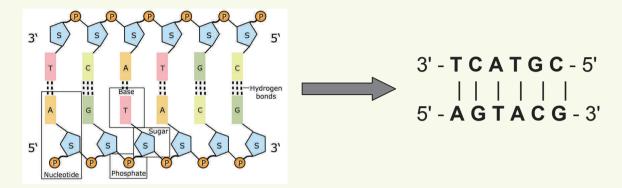
preservare le specie come entità dinamiche capaci di far fronte alle variazioni ambientali


Acquista notevole importanza nell'ultimo decennio grazie ai progressi metodologici

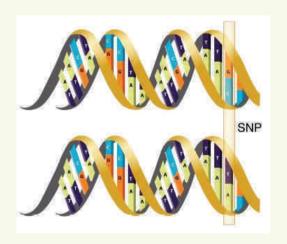
- > campionamenti non invasivi
- velocità delle analisi


Cos'è la variabilità genetica?

Il genoma, o patrimonio genetico, è l'insieme di tutte le informazioni necessarie a 'costruire' un organismo vivente contenute nei geni (~20.000)



Ogni molecola di DNA è composta da due filamenti complementari e antiparalleli arrotolati fra loro a formare una doppia elica


Ogni filamento è costituito dalla successione di 4 unità base dette nucleotidi

Gene: unità ereditaria di base degli organismi viventi, composto da una specifica sequenza di nucleotidi nell'elica

Sfruttando la sua conformazione il DNA è in grado di duplicarsi creando copie dei geni che possono essere trasmessi dai genitori ai figli

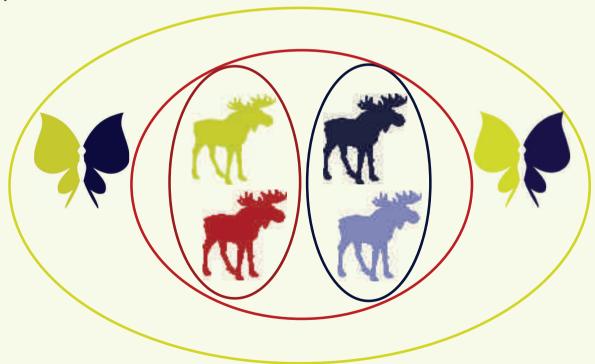
I simili generano propri simili ...

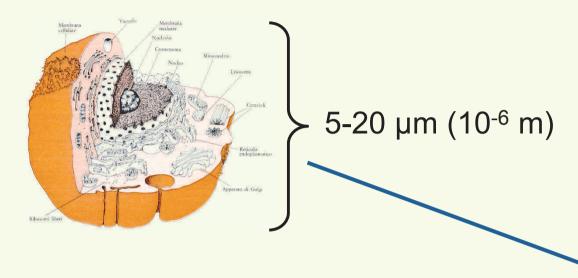
la trasmissione dei caratteri da una generazione a quella successiva

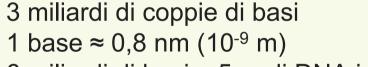
Variabilità

Un individuo differisce in qualche modo sia dai genitori che dai fratelli e le sorelle

Diversità genetica

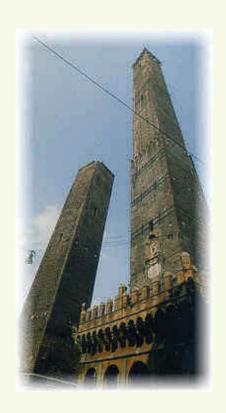

il codice di un gene può variare leggermente fra gli individui


La variabilità genetica è ovunque


La diversità genetica esiste

- Fra individui
- Fra popolazioni
- Fra specie

Quanto DNA in una cellula?



6 miliardi di basi ≈ 5 m di DNA in 5-20 μm

Foglio A4, 60 battute per riga.
30 righe = 1800 basi su ogni foglio due facciate ≈ 4000 basi

Se 100 fogli = 1 cm 6 miliardi di paia di basi ≈ 15000 cm = 150 m

Marcatori genetici

Il DNA non è uniforme

Le diverse regioni hanno funzioni e tassi di variabilità diversi

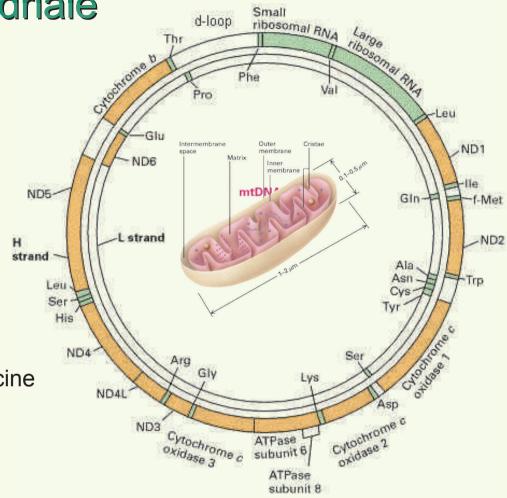
Marcatore: porzione di DNA studiata

Marcatori diversi risolvono problemi diversi

Marcatori genetici

Sequenze - DNA mitocondriale

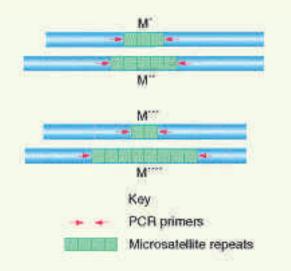
Caratteristiche principali:

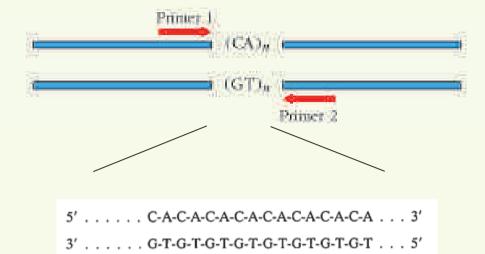

- elevato numero di molecole per cellula
- · eredità materna

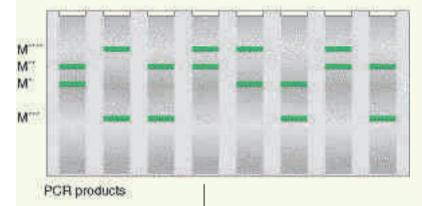
Marcatore molto utilizzato è la d-loop

- elevato tasso di mutazione
- neutralità

Utilità


- differenziamento o somiglianza fra specie vicine
- struttura geografica
- variabilità genetica intra e tra popolazioni




>dloop_Capriolo

Marcatori genetici

Microsatelliti

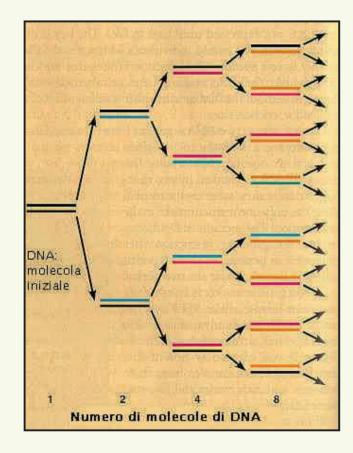
Length 135

Length 135

Un numero diverso di ripetizioni produce frammenti di differente lunghezza

Caratteristiche principali:

- · alto polimorfismo
- frequenti nel genoma
- neutralità


Utilità:

• evidenziare i fenomeni di differenziazione intra e tra popolazioni

Progressi tecnologici

PCR (Polymerase Chain Reaction)

- Metodica ideata nel 1985 da Mullis
- > La PCR simula la duplicazione del DNA nella cellula
- Da poche molecole di DNA se ne ottengono quantità enormi

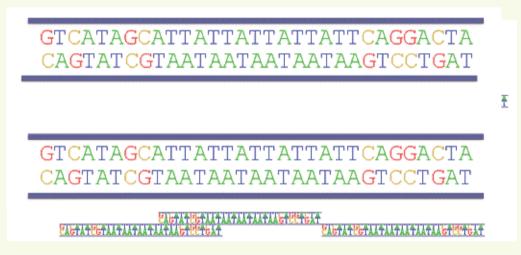
La reazione a catena della polimenrasi (**PCR**) è un modo rapido per amplificare (duplicare) specifiche sequenze di DNA

GTCATAGCATTATTATTATTATTCAGGACTA CAGTATCGTAATAATAATAATAAGTCCTGAT

Sequenza bersaglio con 5 ripetizioni ATT

Il DNA viene denaturato con il calore

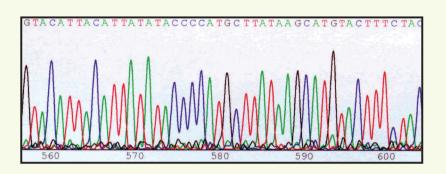
Il DNA viene denaturato con il calore



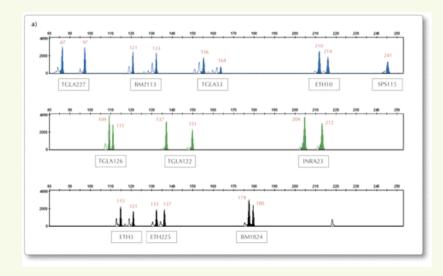
Tramite la Taq polimerasi la sequenza bersaglio viene duplicata

GTCATAGCATTATTATTATTCAGGACTA CAGTATCGTAATAATAATAATAAGTCCTGAT

GTCATAGCATTATTATTATTATTCAGGACTA CAGTATCGTAATAATAATAAGTCCTGAT


Ora abbiamo due copie della nostra sequenza

Ogni ciclo di denaturazione, annealing ed estensione Parecchidmillioni di propie den del Mandisa di Dessere ottenute in poche ore


Sequenziamento automatico:

Sequenza

Analisi di frammenti (microsatelliti o STR)

Da dove si ottiene il DNA?

Il DNA può essere estratto da un qualsiasi tessuto biologico:

Campionamento non invasivo nessuno STRESS per l'animale

Cosa può fare la genetica di conservazione per aiutare a preservare la diversità?

- > Da dove vengono gli individui e a quale specie o popolazione appartengono?
- Le popolazioni si mescolano in natura?
- Come identificare gli individui ibridi?
- Sono le popolazioni geneticamente sane?
- Come individuare popolazioni distinte e unità rilevanti di conservazione?
- > Come prevedere il risultato genetico di decisioni di gestione o di prelievo ?
- Sono le popolazioni abbastanza variabili al loro interno per affrontare il futuro?
- Qual è il successo riproduttivo di un individuo?
- > Le modalità di dispersione sono diverse nei sessi?

Il camoscio in Trentino: un lungo percorso a ritroso dalle Alpi ai Pirenei

Il camoscio - Notizie sistematiche

CAMOSCIO (Rupicapra)

GORAL (Naemorhedus)

SERAU (Capricornis)

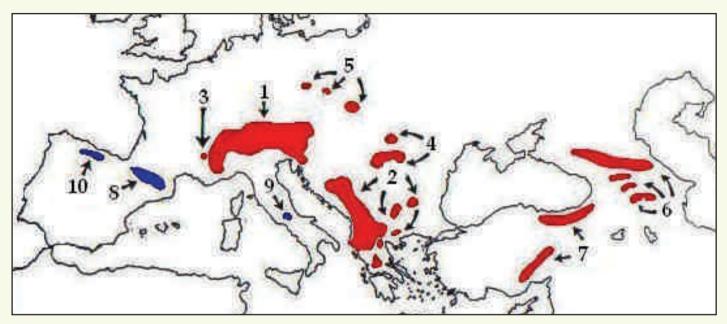
CAPRA delle NEVI (Oreamnos)

Habitat e biologia

- Tipico abitante dell'orizzonte montano, subalpino ed alpino.
- Predilige aree comprese tra i 1.000 e i 2.500 m di altitudine.
- L'altitudine non sembra un fattore limitante, mentre lo sono la diversificazione del territorio e le pendenze.
- Femmine tendenzialmente filopatriche, caratterizzate da un alto grado di gregarismo.
- Maschi sono solitari e tendono maggiormente alla dispersione.
- Maturità sessuale: 2-3 anni per le femmine dopo i 4 anni per i maschi.
- Lunghezza della vita: 14-22 anni.

Prima classificazione

LYDEKKER (1913), COUTURIER (1938) and DOLAN (1963):


1 specie, Rupicapra rupicapra, e 10 sottospecie

- 1. Camoscio Centro-Europeo Rupicapra r. rupicapra
- 2. Camoscio Pirenaico Rupicapra r. pyrenaica
- 3. Camoscio Abruzzese Rupicapra r. ornata
- 4. Camoscio Cantabrico Rupicapra r. parva
- 5. Camoscio Balcanico Rupicapra r. balcanica
- 6. Camoscio Francese Rupicapra r. cartusiana
- 7. Camoscio Carpatico Rupicapra r. carpatica
- 8. Camoscio Tatrico Rupicapra r. tatrica
- 9. Camoscio Caucasico Rupicapra r. caucasica
- 10. Camoscio Turco Rupicapra r. asiatica

Attuale classificazione e distribuzione

LOVARI (1983), SCALA (1984), NASCETTI (1985), SOMA (1987)

Rupicapra rupicapra

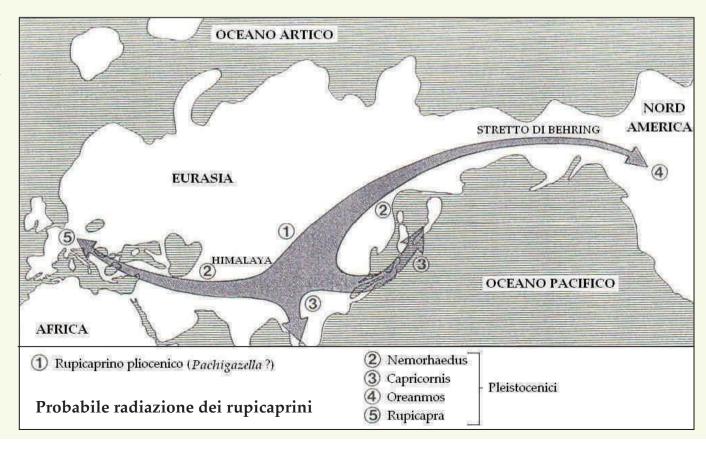
- 1 Rupicapra r. rupicapra
- 2 Rupicapra r. balcanica
- 3 Rupicapra r. cartusiana
- 4 Rupicapra r. carpatica
- 5 Rupicapra r. tatrica
- 6 Rupicapra r. caucasica
- 7 Rupicapra r. asiatica

Rupicapra pyrenaica

- 8 Rupicapra p. pyrenaica
- 9 Rupicapra p. ornata? R. ornata?
- **10** Rupicapra p. parva

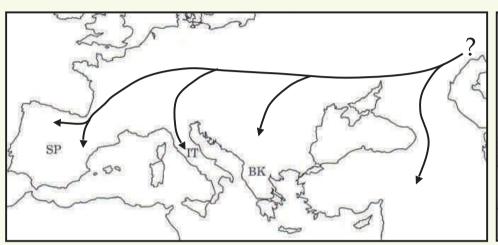
Origine ed evoluzione dei Rupicaprini

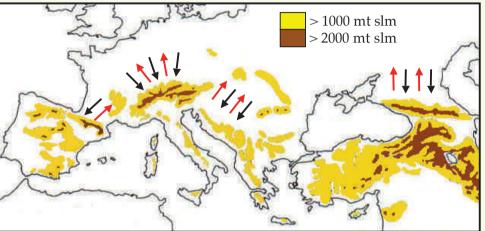
Incerta: reperti fossili carenti ed inadeguati.

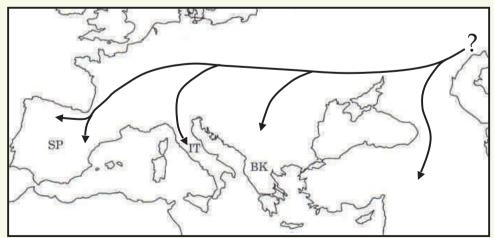

Ricostruzioni più probabili:

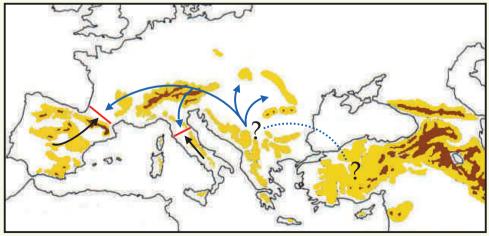
I Rupicaprini originano in Asia durante il Miocene

Si diffondono a partire dall'Asia centro-meridionale raggiungendo il loro range attuale e separandosi nelle attuali forme viventi durante il tardo


Miocene.


Il genere *Rupicapra* si diffonde verso occidente lungo le catene montuose del sistema asiatico nel Pleistocene medio durante una fase climatica fredda


Differenziamento delle 2 specie:


• 1° ipotesi: un unico evento di colonizzazione

• 2° ipotesi: 2 eventi di colonizzazione successivi

Consistenza

Specie	Sottospecie	Numerosità	Status
Rupicapra pyrenaica	3	(35.000)	La specienon presenta segni evidenti di sofferenza
	parva	6.000	Non minacciata
	pyrenaica	25.000	Non minacciata
	ornata	600	Minac ciata; in crescita
Rupicapra rupicapra	1	(500.000)	La specienel complesso è ancora numerosa
	cartusiana	>=150	Criticamente minacciata; in declino
	rupicapra	450.000	Non minacciata
	tatrica	860	Minacciata; in declino
	carpatica	2.500	Non minacciata
	balcanica	25.000	La popolazione Greca è molto piccola gravemente frammentata
	caucasica	<15.000	Vulnerabile; in declino
	asiatica	sconosciuto	Dati non sufficienti

Il camoscio in Trentino

Demografia

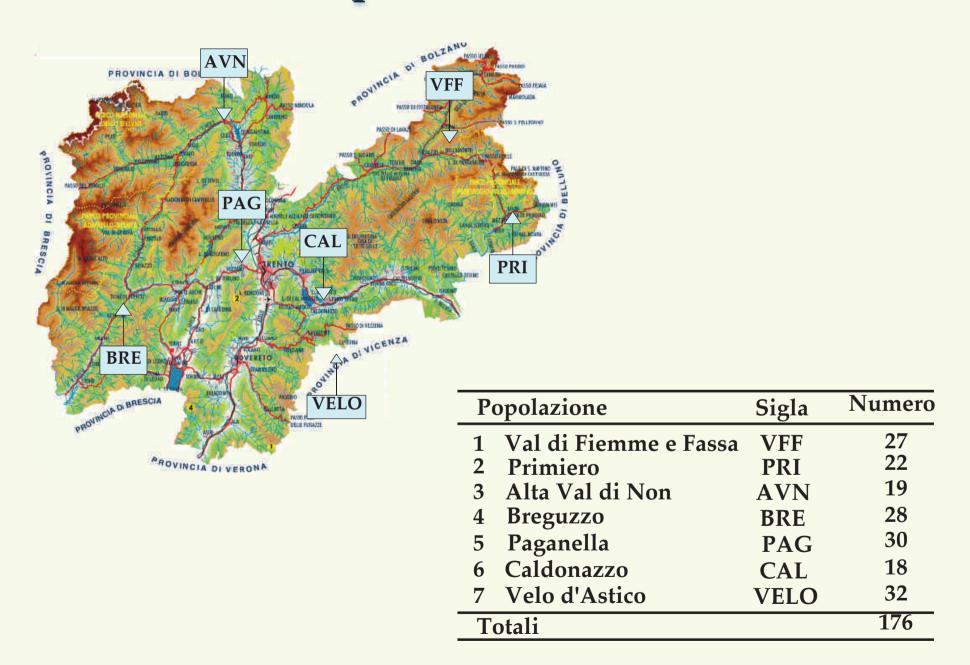
- Bottlenecks durante le Guerre Mondiali con estinzione in alcune aree
- Ricolonizzazioni documentate
- Popolazioni attualmente in espansione

Traslocazioni

 Ci sono notizie di ripopolamenti con animali del Centro Allevamento di Casteller e delle Alpi Occidentali

Scopo iniziale

Determinare:


- variabilità genetica
- struttura genetica su scala microgeografica

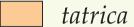
Per individuare

- le conseguenze delle contrazioni demografiche passate
- le traslocazioni e determinarne gli effetti
- l'effetto delle barriere geografiche

Tutte informazioni utili alla gestione della specie

Campionamento iniziale

Primi risultati (dloop - mtDNA) 1091bp della regione di controllo del mtDNA 29 aplotipi 106 siti polimorfici ~ 20 mut


Localizzazione geografica dei siti di campionamento

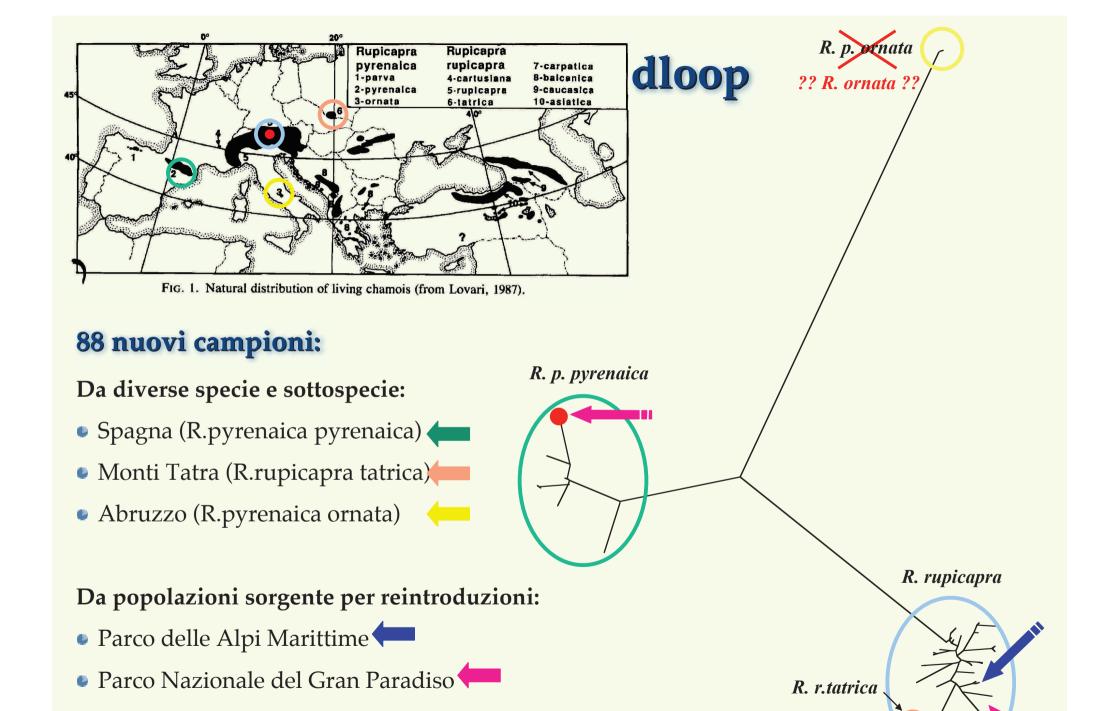
R. rupicapra

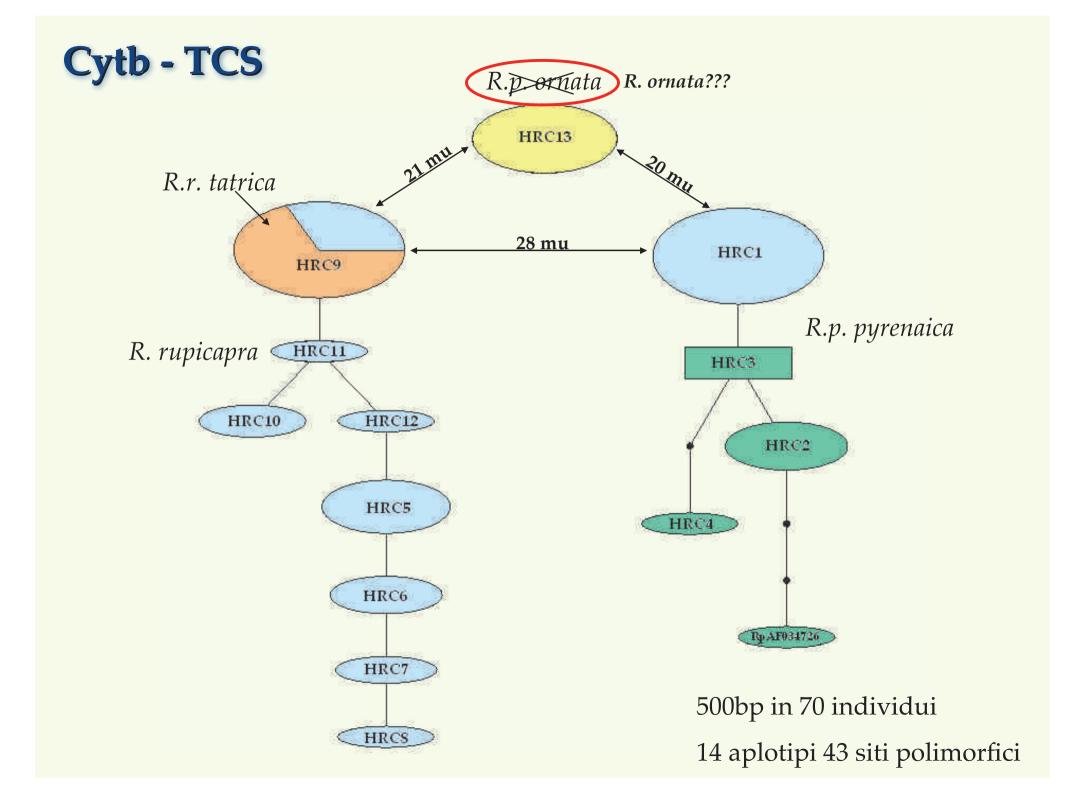
R. pyrenaica

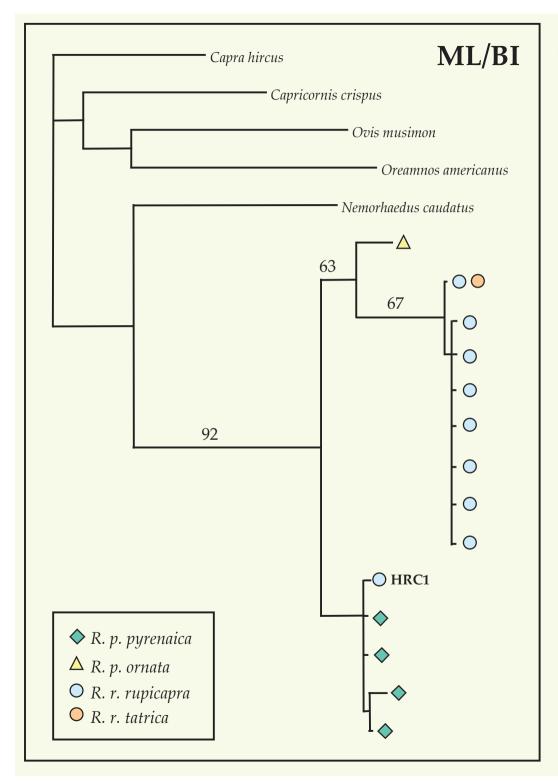
pyrenaica

ornata

Nuovo scopo

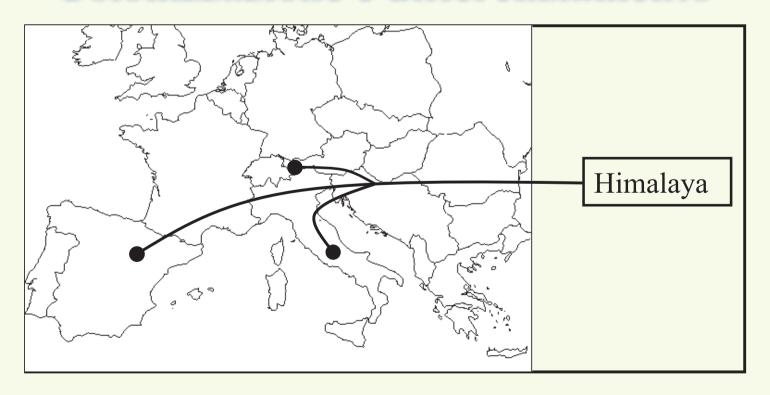

- Variabilità genetica
- Struttura genetica su scala microgeografica
- Evoluzione e tassonomia
- Implicazioni gestionali dei risultati ottenuti


Risultati


dloop - ML

Evoluzione e tassonomia

28 nuovi aplotipi, 63 nuovi siti variabili per un tot. di 176


Cytb – alberi filogenetici

- Ricostruzione degli avvenimenti che hanno portato all'attuale situazione tassonomica
- Monofilia del camoscio rispetto agli altri tre generi dei Rupicaprini
- Si conferma l'esistenza di tre gruppi tassonomici ben distinti
- I quattro metodi danno risultati contrastanti nella ricostruzione dei rapporti relativi tra i tre gruppi

Tempi di divergenza

	R.r.rupicapra	R.p.pyrenaica	R.p.ornata
R.r.rupicapra	-		_
R.p.pyrenaica	1.351.386	-	
R.p.ornata	955.720	993.704	-

Colonizzazione e differenziamento

Conclusioni 1

Evoluzione e tassonomia

- Si conferma l'alta differenziazione tra le specie pyrenaica e rupicapra
- l'alto grado di divergenza genetica tra ornata e pyrenaica/rupicapra sembra supportare lo status specifico del camoscio Apenninico;
- le sottospecie *rupicapra* e *tatrica* della specie *R. rupicapra* sono geneticamente differenziate solo per alcuni marcatori, il loro status sottospecifico da un punto di vista genetico sembra artificioso
- molti individui *R. rupicapra* provenienti dalle Alpi portano un aplotipo molto simile a quelli trovati in *R. pyrenaica*; questo risultato necessita di ulteriori approfondimenti ma è probabilmente una conseguenza di eventi di traslocazione avvenuti negli ultimi secoli piuttosto che di antichi processi migratori

Variabilità genetica

Variabilità genetica - dloop

1091bp - 264 individui - 16 popolazioni 57 aplotipi - 173 siti polimorfici

Subspecies	Population	mtDNA-dloop						
		n	K (privates) ¹	AR	H (SD)	S	∂n% (SD)	
R. rupicapra								
rupicapra	Trentino region							
	BRE	28	4 (3)	3.29	0,75 (0,04)	22	0,76 (0,40)	
\longrightarrow	PAG	30	4 (3)	1.60	0,19 (0,09)	22	0,15 (0,10)	
	AVN	19	6 (5)	3.77	0,80 (0,06)	28	0,88 (0,47)	
	VFF	27	9 (6)	4.39	0,87 (0,04)	29	0,88 (0,46)	
	PRI	22	7 (3)	3.79	0,80 (0,06)	20	0,80 (0,43)	
	CAL	18	6 (1)	3.61	0,78 (0,07)	90	3,26 (1,67)	
\longrightarrow	VELO	32	2 (0)	1.80	0,35 (0,08)	67	2,65 (1,32)	
	Western Alps							
	PNGP	22	3 (2)	2.23	0,54 (0,07)	74	3,74 (1,88)	
	PAM	6	3 (3)	3.00	0,73 (0,16)	3	0,11 (0,09)	
	Tatra Mountain	S						
	GFM	6	3 (2)	2.67	0,60 (0,21)	25	1,06 (0,65)	
	SRS	5	1(1)	1.00	0	0	0	
	JERC	7	3 (2)	2.43	0,52 (0,21)	14	0,38 (0,25)	
tatrica	HT	7	5 (4)	4.43	0,86 (0,14)	6	0,18 (0,13)	
\longrightarrow	LT	10	2 (1)	1.60	0,20 (0,15)	1	0,02 (0,03)	
R. pyrenaica								
ornata	ABR	11	2(2)	1.82	0,33 (0,15)	1	0,03 (0,04)	
pyrenaica	RP	9	6(6)	4.57	0,89 (0,09)	47	1,69 (0,94)	

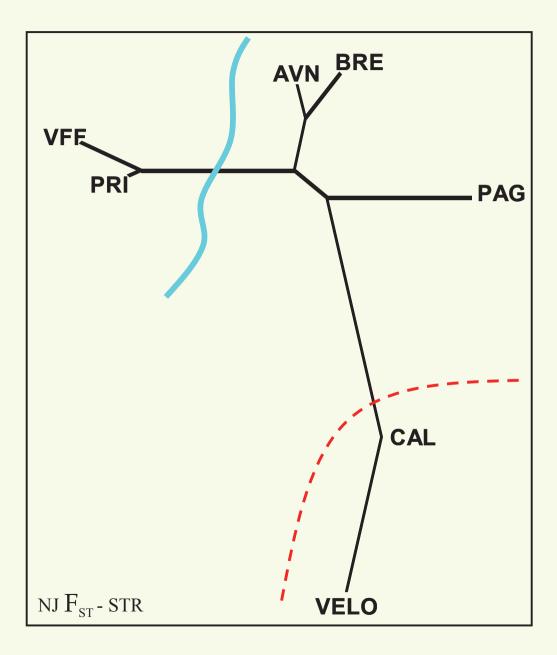
K=numero di aplotipi; AR=ricchezza allelica; S=numero di siti polimorfici; π =numero medio di differenze a coppie; H=gene diversity; π _n=nucleotide diversity

Variabilità genetica - Microsatelliti

11 loci -245 individui - 13 popolazioni: tutti polimorfici, media 9,45 alleli per locus No deviazioni significative dall'equilibrio di HW

Subspecies	Population				STR			
		n	A (SD)	H_{E} (SD)	Ho (SD)	AR	PA	HWE ³
R. rupicapra								
rupicapra	Trentino region							
	BRE	28	5.27 (2.41)	0.54 (0.24)	0.57 (0.29)	3.34	5	-
	PAG	30	5 (2.61)	0.59 (0.19)	0.6 (0.19)	3.45	-	1
	AVN	19	4.82 (1.99)	0.55 (0.25)	0.54 (0.28)	3.50	-	1
	VFF	27	4.63 (2.62)	0.54 (0.24)	0.52 (0.23)	3.24	1	-
	PRI	22	4.36 (2.77)	0.49 (0,25)	0.47 (0.23)	3.10	-	1
	► CAL	18	5.27 (2.28)	0.61 (0.22)	0.58 (0.19)	3.65	-	1 🛧
	VELO	32	4.82 (1.72)	0.57 (0.16)	0.58 (0.15)	3.20	1	1
	Western Alps		,		, ,			
	PNGP	22	5.09 (2.26)	0.58 (0.24)	0.59 (0.24)	3.46	1	1
	PAM	6	3.45 (1.35)	0,48 (0.29)	0.55 (0.36)	3.28	-	-
	Tatra Mountains							
	→ GFM	6	2.18 (1.08)	0.28 (0.27)	0.27 (0.9)	2.09	_	1
	SRS	_	nd^2	nd	nd	nd	nd	nd
	JERC	_	nd	nd	nd	nd	nd	nd
tatrica ——	► HT	6	2.18 (1.25)	0.33 (0.28)	0.42 (0.39)	2.15	1	- 4
	► LT	9	2.82 (0.98)	0.41 (0.22)	0.40 (0.25)	2.51	-	1
R. pyrenaica								
ornata	ABR	11	1.64 (0.92)	0.14 (0.20)	0.08 (0.14)	1.43	4	1
pyrenaica	RP	9		0.14 (0.20)	,	3.43	9	1
ругениши	M	9	4.00 (1.41)	0.34 (0.23)	0.57 (0.27)	3.43	9	-

A=numero medio di alleli per locus; H_E, Ho eterozigosità media attesa e osservata sui loci; AR=ricchezza allelica; PA=numero di alleli privati.

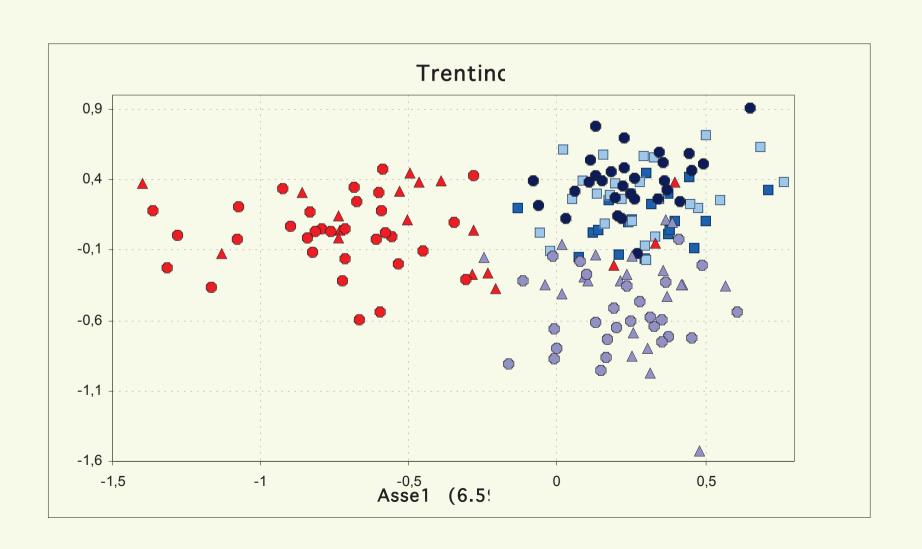

Conclusioni 2

Variabilità genetica

- Non ci sono segni evidenti di sofferenza genetica dovuti ai decrementi demografici (fa eccezione Paganella)
- Alti livelli di variabilità possono essere ricondotti in alcuni casi agli interventi antropici sulle popolazioni, a discapito dell'identità genetica locale
- Un attento esame dei differenti marcatori permette di distinguere tra la variabilità naturale e quella dovuta alle reintroduzioni

Struttura genetica su scala microgeografica e traslocazioni

Divergenza tra popolazioni



Mitocondriale - dloop

• Trentino: $\Phi_{ST} = 0.61$

Microsatelliti

• Trentino $F_{ST} = 0.11$

Conclusioni 3

Struttura genetica su scala microgeografica e traslocazioni

- Struttura genetica particolarmente evidente anche su scala microgeografica probabilmente favorita dalla distribuzione ecologica della specie
- Maggiore per i marcatori mitocondriali, minore ma statisticamente significativa anche per i microsatelliti. Questo potrebbe confermare la maggiore filopatria femminile
- La barriera geografica dell'Adige ha modellato la distribuzione della variabilità genetica in Trentino
- I marcatori genetici permettono di ricostruire gli eventi di traslocazione
- I microsatelliti permettono di individuare traslocazioni recenti, confermando l'origine eterogenea di alcune popolazioni ed eventi di ibridazione solo supposti
- Il DNA mitocondriale conserva traccia anche di eventi di traslocazione avvenuti in tempi storici, ad esempio le possibili reintroduzioni non storicamente documentate tra pirenei ed alpi.

Implicazioni gestionali

- L'isolamento sembra una caratteristica comune delle popolazioni di camoscio
- Fondamentale preservare le popolazioni come identità genetiche separate
- Prestare maggiore attenzione in futuro alle traslocazioni perché le conseguenze a livello genetico sono evidenti
- Monitorare le popolazioni ibride tra le due specie per evidenziare eventuali effetti negativi da outbreeding
- Monitorare altre regioni alpine per identificare le popolazioni pure

LA PERNICE BIANCA ALPINA (Lagopus muta helvetica): GENETICA DI CONSERVAZIONE NELLE ALPI ITALIANE

FONDAZIONE EDMUND MACH

Barbara Crestanello

Gruppo di Ricerca: Genetica di Conservazione Dipartimento di Biodiversità ed Ecologia Molecolare

Notizie sistematiche

Ordine: Galliformes

Famiglia: Phasianidae

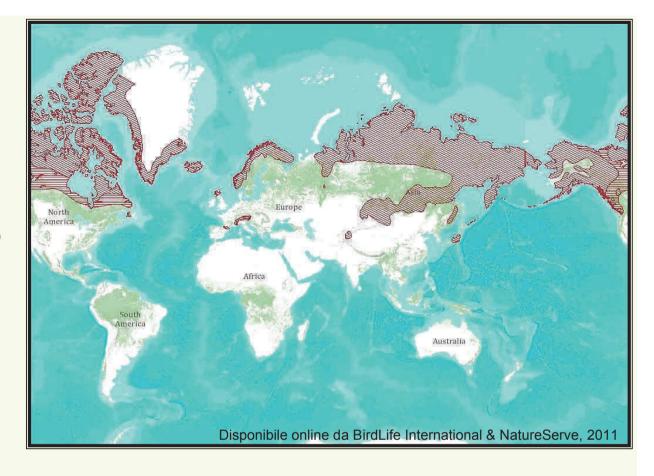
Sottofamiglia: Tetraoninae

Genere: Lagopus (Brisson, 1760)

Specie: muta (Montin, 1776)

Sottospecie: 23-30. Altamente politipica per variabilità dimensioni e piumaggio

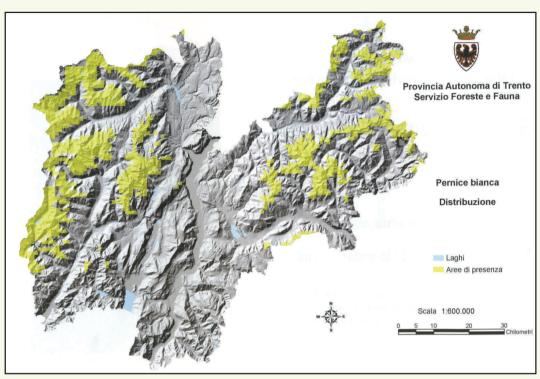
Sottospecie alpina: helvetica (Thienemann, 1829)



Distribuzione

Circumartica boreoalpina

(pernice bianca, lepre bianca e picchio tridattilo)



- > Legata ai fenomeni glaciali
- > 2 areali nettamente disgiunti:
 - regioni nordiche (artiche e boreali)
 - catene montuose Europa meridionale
- > Vasta escursione latitudinale dell'areale (83°N Groenlandia 42-45°N Pirenei e Altai-Asia Centrale)

Specie tipica della tundra artica presente nelle alpi come relitto glaciale

Lagopus muta helvetica

- > presente in tutti i settori dell'arco alpino, con esclusione della Liguria
- > distribuzione discontinua in relazione ai rilievi alpini e prealpini più elevati
- > sensibile alle caratteristiche morfologiche, climatiche e vegetazionali
- > scomparsa da alcune aree prealpine del Veneto e del Friuli nel XX secolo

Morfologia

Mimetismo: principale caratteristica della specie:

livrea estiva: superiormente bruna, ali e ventre bianco

livrea invernale: completamente candida, escluse timoniere, per entrambi i sessi


Medie dimensioni: Lunghezza totale ~35 cm

Apertura alare 54-60 cm

Peso 420-540 g

dimensioni lievemente inferiori colori generalmente meno intensi maggiore in inverno

sviluppo maggiore delle caruncole redini nere dalla base del becco all'occhio

Adattamenti morfologici ai climi estremi

Narici, tarsi e dita ricoperte in inverno da piume

Ciechi intestinali molto sviluppati per digerire rametti legnosi e foglioline coriacee, tipici alimenti invernali

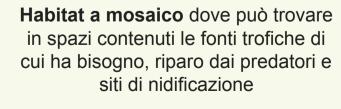
Habitat

Notevole escursione altimetrica:

orcella Marmolada

dal livello del mare alle estreme latitudini settentrionali (tundra artica)

alle alte quote degli habitat artico-alpini delle medie latitudini (1.500-3.000 mslm)

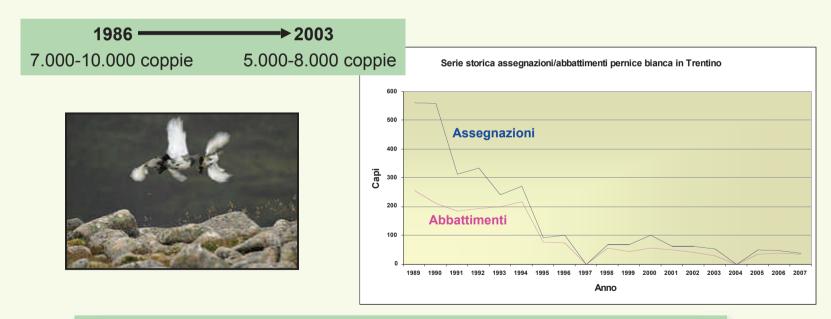


Caratterizzato da:

creste ed affioramenti rocciosi

ghiacciai e nevi permanenti

vegetazione sparsa dominata da specie erbacee, licheni e muschi


Ecologia e Etologia

- Struttura sociale variabile stagionalmente: gregaria per gran parte dell'anno, a coppie in primavera, gruppi famigliari in estate
- Comportamento riproduttivo basato sulla monogamia
- Stagione riproduttiva da Aprile a Luglio. I maschi diventano territoriali e difendono territori tra i 15 ed i 50 ettari (2/6 maschi per Km²)
- * 1 nidiata l'anno con 5-8 uova incubazione 20-21 giorni prole precoce
- I giovani si nutrono di piccoli invertebrati (molluschi e insetti), gli adulti di foglie, gemme, fiori e frutti, soprattutto di rododendro, uva orsina, mirtillo nero, salice nano
- Stanziale (popolazioni meridionali) solo brevi spostamenti altitudinali
- Migrante (popolazioni nordiche) spostamenti di centinaia di chilometri
- Mimetismo come difesa dai predatori

Status e conservazione

- > La pernice bianca come specie non è considerata minacciata (IUCN Red List "least concern")
 - densità di popolazione 1-60 individui/km² fluttuazioni cicliche di densità (~10 anni)
 - · la numerosità e il range distributivo non hanno subito cambiamenti sostanziali
- > Diminuzione locale della numerosità e dei range fino ad estinzione (popolazioni meridionali)
- > La sottospecie *helvetica* appare in lento ma costante declino in molte province italiane

Inserita nell'All. I Direttiva "Uccelli" 72/409/CEE

Lista Rossa (IUCN Italia ed altre nazioni europee, Giappone): "vulnerabile"

Le minacce...

Mutamenti climatici

Specie caratterizzata da concreta selettività ambientale

Riscaldamento globale:

innalzamento del limite della vegetazione riduzione e frammentazione dell'habitat

Attività umane

Turismo di alta quota

aumento consumo energetico (per fughe) aumento predatori generalisti (volpe, corvi, ...) collisioni con fili impianti di risalita

Prelievo venatorio

se non correttamente impostato

Necessità di tutelare efficacemente le popolazioni

Difficoltà...

...nel reperire informazioni complete e aggiornate a causa

dell'elusività della specie

dell'asprezza ambientale che caratterizza il suo habitat

- Areale alpino nettamente disgiunto da quello nordico di origine
- > Popolazioni poco numerose e frammentariamente distribuite
- > Classificazione tassonomica sottospecifica incerta
- > Scarse conoscenze su biologia e comportamento

Necessità di acquisire dati scientifici ai fini gestionali

Obiettivi

- Rapporti evolutivi con le altre specie e sottospecie
 La presenza o meno di nuclei autoctoni
- 2. La variabilità genetica sull'Arco Alpino
- 3. La struttura genetica delle popolazioni attuali L'eventuale isolamento di alcune popolazioni
- 4. Caratteristiche biologiche ed etologiche

Campionamento

Già presenti 141 campioni raccolti nelle stagioni venatorie 1996-2006

Due modalità di raccolta per i nuovi campioni:

- > Campioni abbattuti durante la stagione venatoria:
 - Pochi animali assegnati 26 nella stagione 2009/2010
 - Si ottiene dai cacciatori il 30-40% degli animali assegnati: ~10
- > Campioni non invasivi raccolti durante i censimenti estivi: piume e feci
 - Mai tentato in precedenza
 - Incertezza del risultato

Campionamento non invasivo

Tessuti campionati:

- Penne o piume
 - Avvolte con carta assorbente e conservate a temperatura ambiente
- > Feci
 - Refrigerate fino al momento dell'analisi

Classificazione dei campioni:

- Campioni compresi in uno spazio < 20cm considerati appartenenti ad un unico animale
- Campioni diversi localizzati nell'arco di 3 metri considerati gruppi famigliari

Queste informazioni saranno utili per l'interpretazione dei risultati

Campionamento:

- > Il campionamento potrà essere ripetuto annualmente
- > In 1 o 2 aree si intende ripetere il campionamento più volte nell'arco dell'anno:
 - primavera: periodo riproduttivo
 - estate: presenza di gruppi famigliari
 - autunno: formazione degli stormi, spostamento verso le zone di svernamento

Questo aiuterà a chiarire alcuni aspetti della biologia della specie

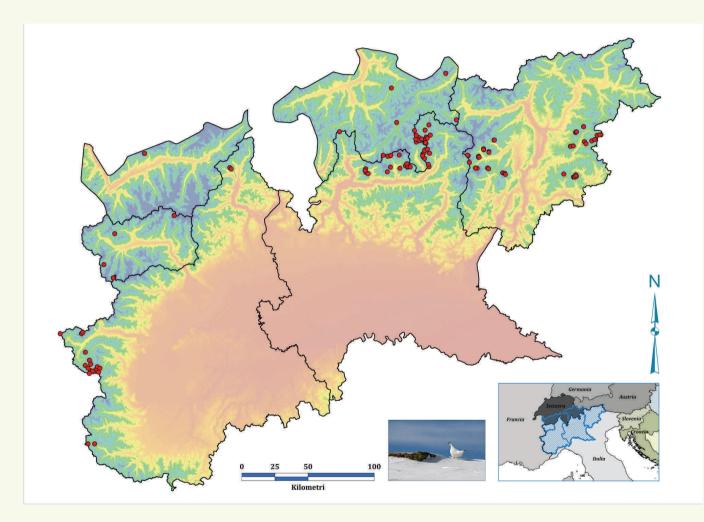
Risultati preliminari

Campionamento:

- > Risultati superiori all'atteso
- > Facilità di reperimento dei campioni (tipologia di territorio; ausilio dei cani da caccia)

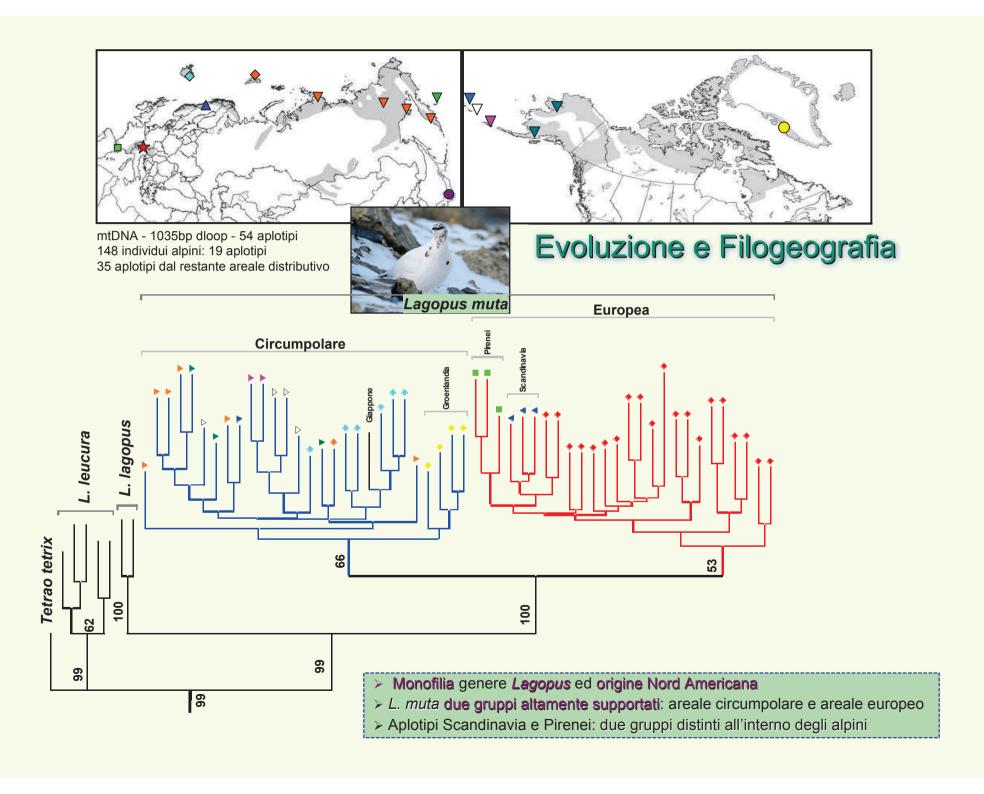
TRENTO	N°
Lastè delle Sutte	70
Val di Fumo	102
Grostè	133
Altopiano della Rosetta	74
Lasteatti-Cengello	15
Grostedi - Valperse	30
Cima Bocche	2
Lastè di Contrin	17
Lago delle Stelune	34
Cima d'Asta	209
Monte Croce	9
Forcella Marmolada	60
rifugio Denza	17
Cima Folga-Canal San Bovo	6
Cauriol	12
Val di Daone-Ucia-Valbona	4
Peio- Careser	6
Val Breguzzo	3
Malga Pozze	4
TOTALE	807

BELLUNO	N°
Monte Piana	9
Marmarole	3
Piani Eterni	21
m.Talvena	3
m.Pelmo	3
Peralba-Chiadenis	104
m.Quaternà	5
Cadin dei Toci	105
Laghi d'Olbe	42
Tre Cime di Lavaredo	32
Vette Felrine	79
Gruppo Schiara	4
Antelao	6
TOTALE	416

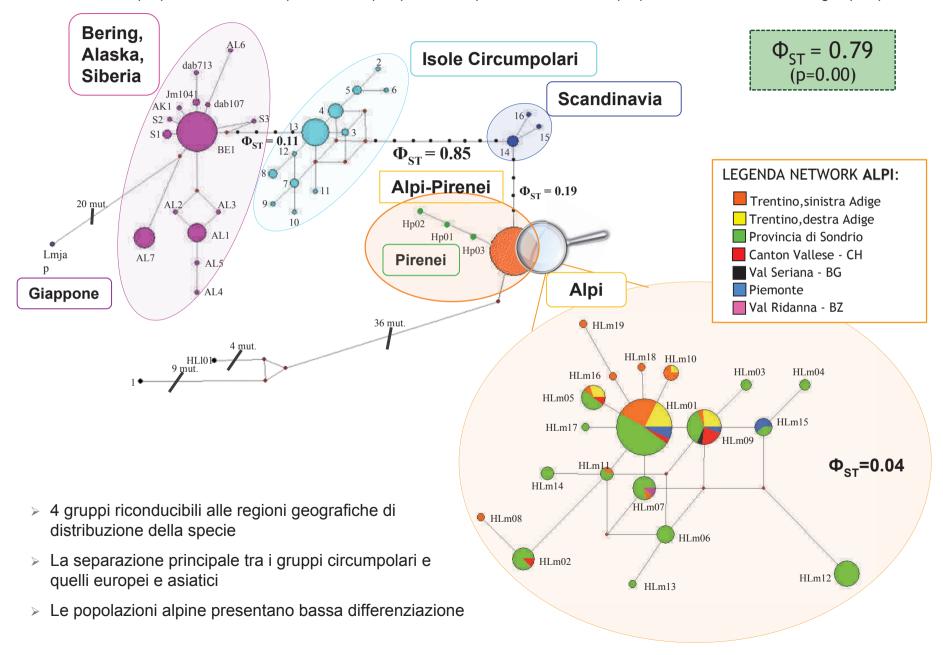

Estratti 220 campioni: resa 60%

Localizzazione geografica dei siti di campionamento

174 campioni: stagioni venatorie 1996-2009

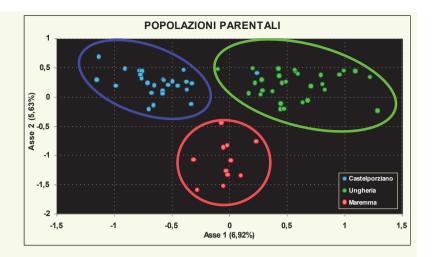

Regione	Provincia	Area faunistica/ Comprensorio alpino	N° campioni
Trentino	Trento	Sinistra Fassa	5
Alto Adige		Destra Fassa	7
		Paneveggio	1
		Latemar	1
		Cima d'Asta	2
		Lagorai	1
		Redival	7
		Presanella	8
		Rabbi	2
		Brenta	3
		Cima d'Asta	9
		Lagorai	1
		Brenta	3
Lombardia	Sondrio	Alta Valle	46
		Chiavenna	1
		Morbegno	8
		Sondrio	40
		Tirano	18
Piemonte	Torino	TO1 (Valli Pellice, Chisone, Germanasca)	3
		TO2	1
	_	(Alta Valle di Susa)	_
	Cuneo	CN4	2
		(Valle Stura di Demonte)	
	Verbania	VCO3	2
		(Ossola Sud)	
Altre provenienze		Comune	N° campioni
Val Ridanna (BZ)			1
Val Seriana (BG)			1
Canton Vallese (CH)		Ayent	4
		Grimentz	4
		CHITICHE	-

In tabella aree faunistiche o comprensori alpini campionati; • : punto specifico di provenienza dei campioni

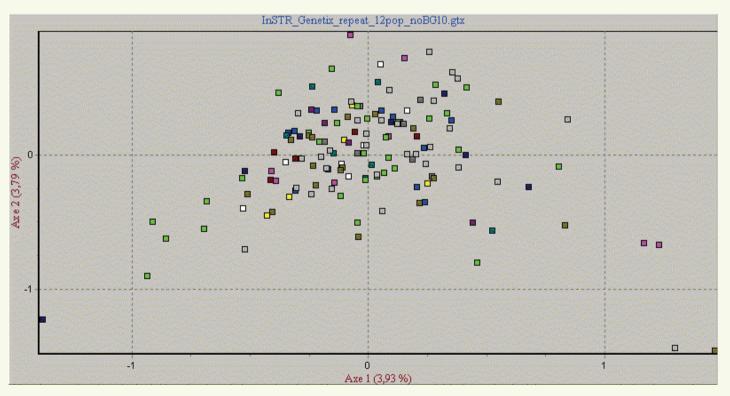

I campioni piemontesi provengono dal progetto Interreg ALCOTRA - l'Università di Milano

METODI DI LABORATORIO

~ 25 mg muscolo / 20 µL sangue Estrazione (DNeasy ® Blood & Tissue Kit, Qiagen Inc) $10 - 20 \mu g DNA$ DNA nucleare DNA mitocondriale Reazione a catena della polimerasi 10 Microsatelliti (STR) D-loop TUT1 ETAS 148 individui (1128 bp) 152 individui (10 loci) < in analisi usati 9 loci > 19 aplotipi



Network degli aplotipi di *Lagopus muta* provenienti da tutto l'areale; in basso a destra zoom sul Cluster alpino. Il diametro dei cerchi è proporzionale alla frequenza dell'aplotipo nel campione. Le linee sono proporzionali alla distanza tra gli aplotipi.



Risultati - Struttura Alpi

AFC (Analisi Fattoriale delle Corrispondenze) 9 loci microsatellite

A livello alpino si evidenzia mancanza di struttura genetica (F_{ST}=0.02)

Popolazione alpina panmittica

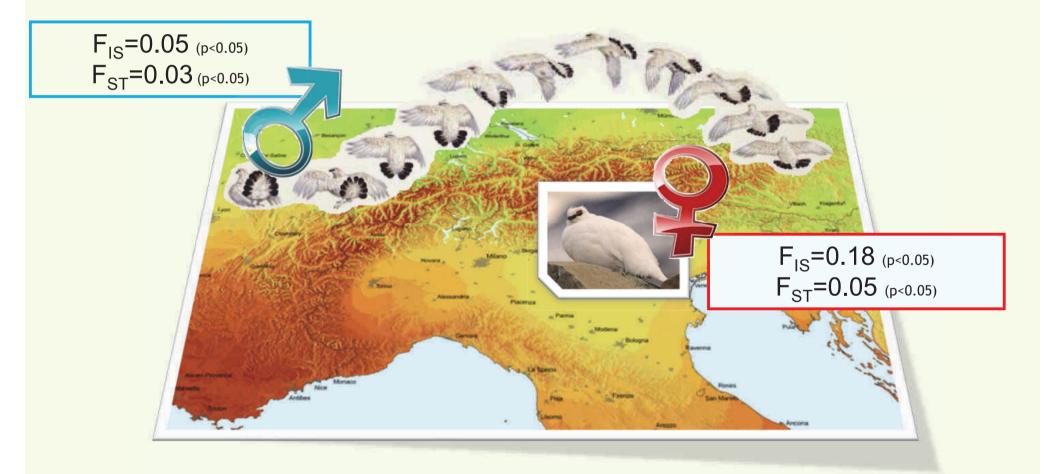
Diversità genetica

D-loop Intero	CLUSTER	N° ind	K	S	H (±SD)	Ricchezza Allelica
areale	ALPI	148	19	18	0.79 (±0.03)	4.43
SCA	NDINAVIA	7	33	2	0.52 (±0.21)	3
	SOLE MPOLARI	56	12	9	0.69 (±0.06)	3.72
SIBERIA, ALASKA, BERING		109	12	14	0.61 (±0.05)	3.13

Ricchezza allelica					
4.43 > 3.13 (p<0.05)					
Alpi > Siberia Alaska Bering					
Haplotype diversity					
0.79 > 0.43					
Alpi > Pirenei					

STR Alpi

	Locus	A	H_{O}	$H_{\rm E}$	Range allelico
	BG19	6	0.77	0.79	5
	BG20	7	0.74	0.76	6
	TUT1	7	0.25	0.48	8
	TUT2	13	0.80	0.85	14
	TUT3	8	0.75	0.78	7
	BG12	7	0.42	0.77	6
	BG15	9	0.72	0.78	8
	BG16	9	0.81	0.84	8
	BG18	11	0.83	0.83	14
	Media	8.556	0.68	0.76	8.44
_	s.d.	2.114	0.19	0.10	3.13


Deviazione da equilibrio Hardy-Weinberg

Sulle Alpi alti livelli di diversità genetica

ASPETTI SOCIALI, DISPERSIONE DEI SESSI

Popolazione globale Alpi

 F_{ST} D-loop (0.036, p<0.05) > F_{ST} STR (0.019, p=0.00)

I risultati sono a favore di una maggiore dispersione dei maschi

Conclusioni

- Lagopus muta helvetica è un elemento peculiare della biodiversità alpina, distinguendosi nettamente dalle conspecifiche circumpolari
- > Presenta alti livelli di diversità e nessun segno evidente di sofferenza genetica
- Nessuna struttura e/o segni di isolamento: popolazione panmittica
- > Dispersione caratteristica della specie: maggiormente a carico dei maschi

Habitat in pericolo

Cambiamenti climatici e disturbo antropico sono le principali minacce

Obiettivi della tutela

mantenere attuali livelli diversità garantire il flusso genico