REGIONE LOMBARDIA

PROVINCIA DI BERGAMO COMUNE DI CIVIDATE AL PIANO

OGGETTO: RELAZIONE GEOLOGICA, GEOTECNICA SULLE

INDAGINI E SISMICA

D.M. 17.01.2018 D.G.R. IX 2616/2011

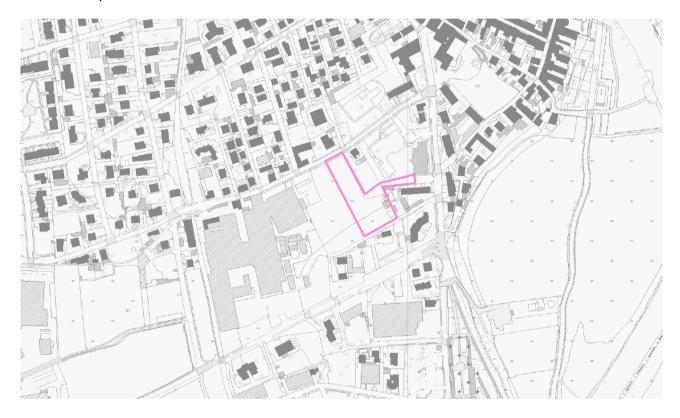
INTERVENTO: Realizzazione parcheggio polifunzionale

Viale Rimembranze, Cividate al Piano (BG) Fg. N. 908 m.li n. 988, 4556, 3407, 4224

dott. Simone Lucchini

30 giugno 2022

GES - Consulenze Ambientali di dott. Simone Lucchini

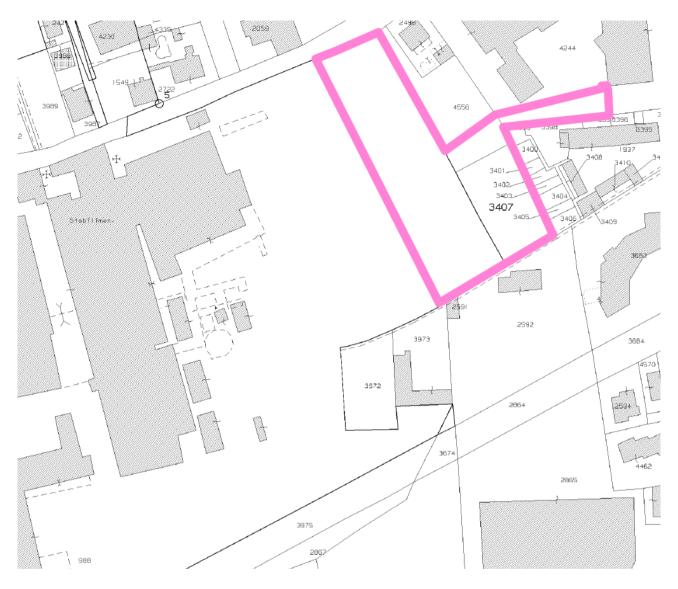

Via Camillina n. 3 – Viadana (MN)
tel. 0375.868086 - mob. 328.3642462 – C.F. LCCSMN72H09L826I - P.I 02449990205
mail: lucchinisim@gmail.com – pec: simone.lucchini@epap.sicurezzapostale.it

INDICE DEI CAPITOLI

- 1. PREMESSA
- 2. PROVE GEOTECNICHE IN SITO
- 3. LIVELLO FREATICO
- 4. CARATTERISTICHE GEOLOGICHE
- 5. CARATTERISTICHE GEOTECNICHE
- 6. CALCOLO DELLA CAPACITA' PORTANTE
- 6.1 SISMICITA'
- 6.2 PRESSIONE AMMISSIBILE
- 6.3 VERIFICA ALLA LIQUEFAZIONE
- 7. CONCLUSIONI

1 PREMESSA

La finalità del presente studio è di fornire informazioni sulla natura e sulle caratteristiche geologiche, geotecniche e sismiche dei terreni interessati dalla realizzazione di un muro di contenimento all'interno del progetto per la realizzazione di un parcheggio polifunzionale. L'intervento in progetto è in Comune di Bariano (BG) come da ripresa satellitare sottostante.


Tav. 1: ripresa su base CTR area d'intervento (scala 1:10.000)

Lo studio, effettuato ai sensi del DM 17.01.2018 e della D.G.R. IX 2616/2011, fornirà al progettista incaricato dati sui terreni di fondazione, necessari per il dimensionamento delle fondazioni dei manufatti.

L'analisi dell'area è stata svolta seguendo le seguenti fasi:

- 1. rilievo dell'area;
- 2. raccolta e consultazione di dati bibliografici e cartografici per l'inquadramento generale dell'area;
- 3. valutazione di indagini dirette per il riconoscimento litologico, effettuate in prossimità dell'intervento, costituite da 1 prova penetrometrica dinamica spinta fino al rifiuto, alla profondità di 7,4 m dal piano campagna.
- 4. Esecuzione di un'indagine sismica tipo HWSR.

Gli interventi si sviluppano su una superficie rispettivamente di circa 670 mq ed interessano l'area evidenziata nella tavola planimetrica sottostante. Dal punto di vista catastale il sito ricade al fg. N. 908 m.li n. 988, 4556, 3407, 4224 del Comune di Cividate al Piano.

Tav. 2: estratto di mappa con ubicazione CPT eseguite (da scala 1:2.000)

L'indagine geognostica, nel rispetto della normativa vigente sopra citata, ha permesso di:

- illustrare il contesto litostratigrafico;
- individuare la falda idrica;
- ricostruire e descrivere la stratigrafia del sottosuolo;
- parametrizzare dal punto di vista litostratigrafico e geotecnico il terreno di fondazione.

2 PROVE GEOTECNICHE IN SITO

Per la caratterizzazione geologico-tecnica del sito sono state eseguite tre prove penetrometriche dinamiche. E' stato utilizzato un penetrometro statico-dinamico tipo Gouda, montato su cingolato semovente, caratterizzato da un peso della massa battente di 63.50 Kg.

La prova penetrometrica, inclusa negli standards ASTM (D3441-79) recentemente aggiornati (D3441-86), trova generale applicazione nel campo della geotecnica per: rilevare l'andamento stratigrafico lungo una verticale,

individuare i tipi di terreno attraversati,

interpolare l'andamento degli strati fra verticali di sondaggio.

I valori che si misurano possono inoltre essere utilizzati per valutare:

l'angolo di attrito e la compressibilità drenata dei terreni granulari,

la resistenza al taglio non drenata dei terreni coesivi.

Per l'identificazione litologica dei terreni attraversati ci si avvale generalmente di correlazioni indirette che utilizzano sistemi di classificazione basati sui valori di resistenza dinamica alla punta in funzione del numero di colpi N.

I parametri geotecnici, valutati attraverso correlazioni empiriche, vengono utilizzati per estrapolare la capacità portante ed i cedimenti delle fondazioni dirette sempre con l'ausilio di formule empiriche.

Considerando le caratteristiche dell'edificio e le sue dimensioni, la profondità d'indagine utilizzata si è ritenuta più che sufficiente ad ottenere la caratterizzazione geotecnica dei terreni fino a quote in cui l'influenza dei carichi applicati risulta trascurabile.

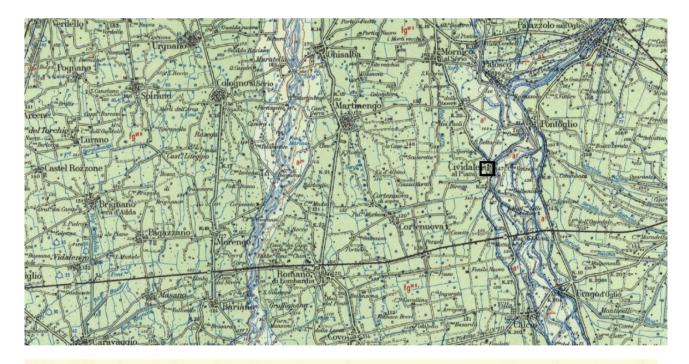
La prova penetrometrica dinamica. di tipo meccanico consiste nella misura della resistenza alla penetrazione di una punta meccanica, di dimensione e caratteristiche standardizzate, infissa nel terreno mediante una massa battente.

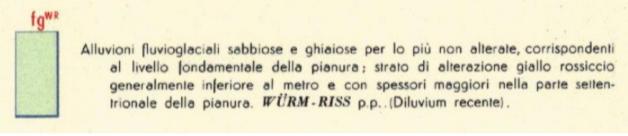
La punta conica è caratterizzata dalle sequenti dimensioni standard:

Diametro punta conica	ф	51,0	mm
		0	
Area base della punta conica	Ap	20,4	cm ²
·	r	3	
Angolo di apertura del cono	В	60°	deg

3 LIVELLO FREATICO

Le informazioni sulla superficie freatica dei luoghi sono state raccolte sia da precedenti studi eseguiti in zona sia anche dai dati della Rete di Controllo della piezometria dell'Amministrazione Provinciale di Bergamo, nonché dalle prove penetrometriche statiche sopra citate.


Risulta che nell'area esiste una falda superficiale direttamente influenzata dalla rete e corsi d'acqua che di volta in volta funzionano da colatori o adacquatori.


Essa si muove in un mezzo permeabile ed il flusso idraulico ha andamento generale da N verso S.

La profondità della superficie acquifera alla data dell'indagine è stata individuata a 1,0 m. dal p.c, profondità che viene considerata di progetto.

4 CARATTERISTICHE GEOLOGICHE

La pianura padana è il risultato del riempimento del Bacino Perisuturale Padano, vasta depressione delimitata a cintura dai rilievi appenninici ed alpini, avvenuto attraverso un potente accumulo di depositi marini ed alluvionali di età pliocenica e quaternaria. L'attuale strutturazione del bacino trae origine dalle spinte deformative che, a partire dal Miocene superiore, hanno coinvolto l'Appennino Settentrionale e l'antistante substrato padano, provocandone la deformazione secondo un modello generale a falde sovrapposte ed embrici NE vergenti (PIERI & GROPPI, 1982).

Tav. 5: estratto dalla Carta Geologica da scala 1:100.000

Il riempimento del bacino è costituito da una successione di depositi a carattere regressivo, con alla base sabbie e peliti torbiditiche seguite da un prisma sedimentario fluvio-deltizio progradante, ricoperto al tetto da depositi continentali. Questo riempimento del bacino non è avvenuto in maniera progressiva e continua, ma è il risultato di eventi tettonico-sedimentari "parossistici", separati nel tempo da periodi di marcata subsidenza bacinale e movimenti ridotti delle strutture compressive.

L'interpretazione dei profili sismici eseguiti nel corso degli anni dall'AGIP (Di Dio, 1997) ha permesso di riconoscere due direzioni di progradazione: la prima, assiale, est-vergente, connessa al paleodelta del Po; la seconda, trasversale, sud-vergente, originata dai sistemi fluvio glaciali di alimentazione alpina.

Sulla base dei moderni concetti di stratigrafia sequenziale, ossia del metodo stratigrafico che utilizza le discontinuità e le superfici di continuità ad esse correlabili per suddividere la successione sedimentaria in sequenze deposizionali, nell'ambito dei depositi quaternari del margine alpino padano e dell'antistante pianura sono state riconosciute due sequenze principali, in risposta ad altrettanti eventi tettonici di sollevamento regionale.

5 CARATTERISTICHE GEOTECNICHE

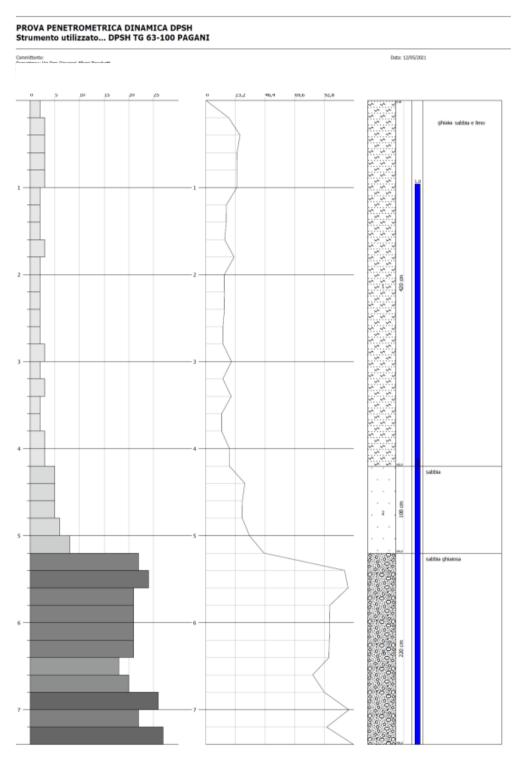
Al fine di pervenire alla caratterizzazione geotecnica del sottosuolo, si riportano in allegato le risultanze delle prove penetrometriche statiche da cui è possibile ricavare, con l'impiego di opportune correlazioni esistenti in letteratura, i parametri geotecnici differenziando il caso dei terreni granulari da quello dei terreni coesivi.

Pertanto, la valutazione dei parametri di deformabilità e di resistenza al taglio, attraverso i quali caratterizzare i terreni, è stata effettuata impiegando le correlazioni esistenti nella letteratura geotecnica (Seed & Idriss (1971), Schmertmann (1976 – 78), A.G.I. (1977) e Bowless (1982) – tra gli stessi parametri ed i risultati delle prove in situ.

Di seguito vengono dunque definiti i campi di variazione dei parametri geotecnici che descrivono quali-quantitativamente le formazioni presenti nel sottosuolo in esame.

PARAMETRI GEOTECNICI PROVA DPSH

Strato	Prof.	NSPT	Peso unità	Angolo di	Coesione	Modulo	Modulo	Modulo	Modulo di
(n)	(m)		di volume	resistenza	non drenata	Edometrico	Elastico	Poisson	taglio G
			(t/m^3)	al taglio	(kg/cm ²)	(kg/cm ²)	(kg/cm ²)		(kg/cm ²)
				(°)					
1	0,00-4,20	3,29	1,46	27,52	0,22	23,36	26,32	0,35	199,10
2	4,20-5,20	7,21	1,63	30,02	0,45	51,19	57,68	0,34	416,27
3	5,20-7,40	30,44	2,04	34,36		161,31	181,76	0,31	1224,44


Tav. 6: Valutazioni geotecniche

Dalle indagini eseguite, emerge un assetto litostratigrafico caratterizzato da:

- 0 - 4,2 m: ghiaia sabbiosa e limo

- 4,2-5,2 m: sabbia

- 5,2 - 7,4 m: sabbia ghiaiosa

Tav. 7: Grafico Profondità/numero di colpi – RDP - Interpretazione Stratigrafica DPSH 1

6 VERIFICHE DELLA SICUREZZA E DELLE PRESTAZIONI (SLU - SLE) IN BASE AL DM 17.01.2018 - NORME TECNICHE PER LE COSTRUZIONI

Le verifiche di sicurezza relative agli strati limite ultimi (SLU) devono essere confrontate almeno nei confronti dei seguenti strati limite.

SLU di tipo geotecnico (GEO)

- colasso per carico limite dell'insieme fondazione-terreno
- collasso per scorrimento sul piano di posa
- stabilità globale
- SLU di tipo strutturale (STR)
- raggiungimento della resistenza negli elementi strutturali

La verifica di stabilità globale deve essere effettuata secondo l'Approccio 1:

- Combinazione 1 (A1+M1+R3)

Tenendo conto dei coefficienti parziali riportati nella tabella 6.2.I del DM 17.01.2018 per le azioni:

Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

Tabella 61211 Coefficient parzian per le azioni o per l'effetto delle azioni.									
CARICHI	EFFETTO	Coefficiente Parziale $\gamma_F (o \gamma_E)$	EQU	(Al) STR	(A2) GEO				
Permanenti	Favorevole	~,	0,9	1,0	1,0				
	Sfavorevole	γ _{G1}	1,1	1,3	1,0				
Permanenti non strutturali (1)	Favorevole	.,	0,0	0,0	0,0				
remanenti non struttuan	Sfavorevole	γ _{G2}	1,5	1,5	1,3				
Variabili	Favorevole	.,	0,0	0,0	0,0				
	Sfavorevole	γQi	1,5	1,5	1,3				

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Nella tabella 6.2.II del DM 17.01.2018 per i parametri geotecnici:

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Constitution of the state of th							
PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)			
	APPLICARE IL	PARZIALE					
	COEFFICIENTE PARZIALE	γм					
Tangente dell'angolo di	tan φ′ _k	$\gamma_{\phi'}$	1,0	1,25			
resistenza al taglio							
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25			
Resistenza non drenata	Cuk	γ _{cu}	1,0	1,4			
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0			

nella tabella 6.4.I del DM 17.01.2018 per i coefficienti parziali per le verifiche agli strati limite:

Tabella 6.4.I - Coefficienti parziali /g per le verifiche agli stati limite ultimi di fondazioni superficiali.

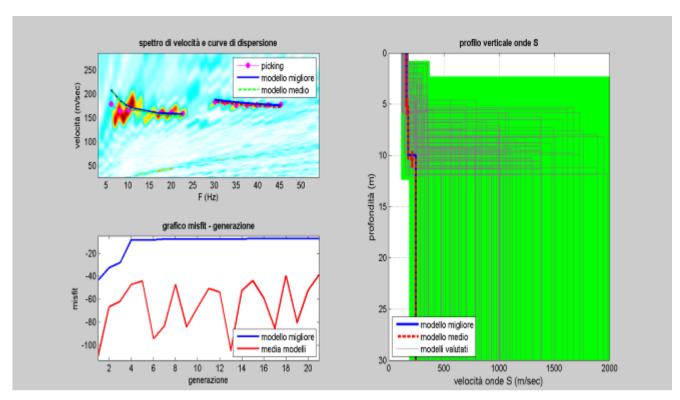
VERIFICA	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
	PARZIALE	PARZIALE	PARZIALE
	(R1)	(R2)	(R3)
Capacità portante	$\gamma_R = 1.0$	$\gamma_{R} = 1.8$	$\gamma_{R} = 2.3$
Scorrimento	$\gamma_R = 1.0$	$\gamma_R = 1,1$	$\gamma_R = 1,1$

Le analisi relative alle condizioni di esercizio (SLE) vanno effettuate nel rispetto dei principi e delle procedure di seguito esposte.

I risultati desunti dall'indagine geognostica evidenziano che il terreno di fondazione è costituito da una successione stratigrafica con terreni a comportamento coesivo livello A e terreni a comportamento granulare livello B e C.

Si è determinata la capacità portante del terreno verificando la stabilità del complesso terreno-fondazione e calcolando il carico limite ultimo la cui applicazione innesca nel terreno fenomeni di deformazione plastica.

Utilizzando i parametri geotecnici ottenuti dalle prove penetrometriche, per il calcolo della capacità portante delle fondazioni si è fatto riferimento alle relazioni Mansen (1970), Terzaghi, Meyerhof, Vesic (1975) e Brinch-Hansen.


Viste le caratteristiche idrogeologiche dell'area, le caratteristiche litologiche e il livello della falda che satura i depositi fin sotto il piano di imposta delle fondazioni, viene considerato il γ^l .

6.1 SISMICITÀ

L'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20.03.2003, "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica", ha modificato in modo sostanziale la metodologia di classificazione eliminando la dicotomia tra "zone classificate" - "zone non classificate", che di fatto veniva interpretata come "zone sismiche" - "zone non sismiche".

A seguito di tale Ordinanza, aggiornata con la Delibera della Giunta Regionale della Lombardia dell'11 luglio 2014 n. X/2129 entrata in vigore il 10 aprile 2016, il territorio comunale di **Cividate al Piano** ricade in **classe 3**.

Sulla base di indagini sismiche di tipo HWSR eseguite in loco, il sito in esame può essere classificata ai sensi delle N.T. del DM 17.01.2018 come segue:

Tav. 9: profilo MASW di riferimento

Modello medio

VS (m/sec): 160, 179, 252

Deviazioni Standard (m/sec): 6, 5, 5

Spessori (m): 5.3, 5.1

Deviazioni Standard (m): 0.85, 0.85

Stima approssimativa di Vp, densità e moduli elastici

Stima VP (m/sec): 861, 643, 998

Stima densità (gr/cm3): 2.03, 1.94, 2.06 Stima modulo di Poisson: 0.48, 0.48, 0.47 Stima modulo di taglio (MPa): 53, 63, 132

Stima modulo di compressione (MPa): 1425, 715, 1865

Stima modulo di Young (MPa): 151, 185, 373

Stima modulo di Lamé (MPa): 1380, 670, 1775

VS30 (m/sec): 260

Possibile Tipo di Suolo: C

Ai fini della definizione dell'azione sismica di progetto il terreno di fondazione relativo all'orizzonte A può essere classificato alla categoria "C" di cui al punto 3.2.2 delle NTC.

Calcolo dello spettro di risposta elastico secondo le N.T.C. 2018

Le coordinate geografiche espresse in questo file sono in ED50

Tipo di elaborazione:Opere di sostegno NTC 2018

Sito in esame.

latitudine: 45,553116 [°] longitudine: 9,831751 [°]

Classe d'uso: II. Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

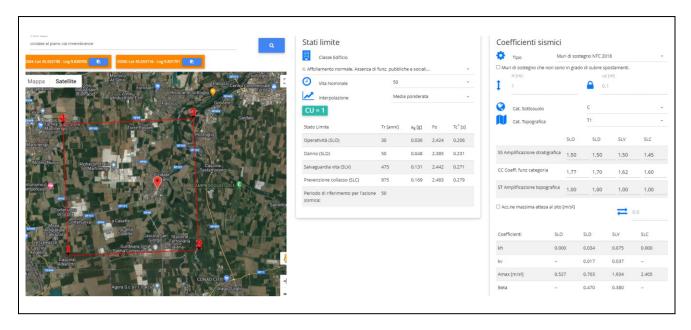
Vita nominale: 50 [anni]

Tipo di interpolazione: Media ponderata

Siti di riferimento.

	ID	Latitudine [°]	Longitudine [°]	Distanza [m]
Sito 1	12047	45,528020	9,783010	4711,4
Sito 2	12048	45,530180	9,854264	3094,9
Sito 3	11826	45,580140	9,851191	3364,5
Sito 4	11825	45,577980	9,779915	4891,5

Parametri sismici


Categoria sottosuolo: C Categoria topografica: T1 Periodo di riferimento: 50 anni

Coefficiente cu: 1

	Prob. superamento [%]	Tr [anni]	ag [g]	Fo [-]	Tc* [s]
Operatività (SLO)	81	30	0,036	2,424	0,206
Danno (SLD)	63	50	0,048	2,385	0,231
Salvaguardia della vita (SLV)	10	475	0,131	2,442	0,271
Prevenzione dal collasso (SLC)	5	975	0,169	2,483	0,279

Coefficienti Sismici Opere di sostegno NTC 2018

	Ss [-]	Cc [-]	St [-]	Kh [-]	Kv [-]	Amax [m/s²]	Beta [-]
SLO	1,500	1,770	1,000	0,000		0,527	
SLD	1,500	1,700	1,000	0,034	0,017	0,703	0,470
SLV	1,500	1,620	1,000	0,075	0,037	1,934	0,380
SLC	1,450	1,600	1,000	0,000		2,405	

Tav. 10: Calcolo dei coefficienti sismici secondo le N.T.C. secondo il software "Geostru - PS".

6.2 PRESSIONE AMMISSIBILE

DATI GENERALI

Normativa	NTC 2018	
Larghezza fondazione	10.0 m	
Lunghezza fondazione	1.0 m	
Profondità piano di posa	0.8 m	
Altezza di incastro	0.5 m	
Profondità falda	5.0	

SISMA

Accelerazione massima (amax/g) 0.054 Effetto sismico secondo Paolucci, Pecker (1997) Coefficiente sismico orizzontale 0.054

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie

Classe d'uso: Classe II

Vita nominale: 50.0 [anni]
Vita di riferimento: 50.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: Categoria topografica: T1

S.L.	TR	TR ag		TC*
Stato limite	Tempo ritorno	$[m/s^2]$	[-]	[sec]
	[anni]			
S.L.O.	30.0	0.353	2.424	0.206
S.L.D.	50.0	0.471	2.385	0.231
S.L.V.	475.0	1.285	2.442	0.271
S.L.C.	975.0	1.657	2.483	0.279

Coefficienti sismici orizzontali e verticali

Opera: Classe II

S.L.	amax	beta	kh	kv
Stato limite	$[m/s^2]$	[-]	[-]	[sec]
S.L.O.	0.5295	1.0	0.054	0.027
S.L.D.	0.7065	0.47	0.0339	0.0169
S.L.V.	1.9275	0.38	0.0747	0.0373
S.L.C.	2.3998	1.0	0.2447	0.1224

STRATIGRAFIA TERRENO

Spessor	Peso	Peso	Angolo	Coesio	Coesio	Modul	Modul	Poisson	Coeff.	Coeff.	Descriz
e strato	unità di	unità di	di	ne	ne non	o	o		consoli	consoli	ione
[m]	volume	volume	attrito	$[kN/m^2]$	drenata	Elastic	Edomet		daz.	dazione	
	$[kN/m^3]$	saturo	[°]]	$\left[kN/m^2\right.$	o	rico		primari	second	
]	$[kN/m^3]$]	$[kN/m^2$	[kN/m²		a	aria	
]]]		[cmq/s]		
4.2	14.6	15.0	27.52	0.0	22.0	0.0	0.0	0.0	0.0	0.0	
1.0	1.5	1.5	30.0	0.0	45.0	0.0	4710.5	0.0	0.0	0.0	
							5				
2.2	16.5	17.0	34.0	0.0	0.0	0.0	4116.6	0.0	0.0	0.0	
							5				
0.2	20.85	21.63	32.44	0.0	245.17	32746.	9806.4	0.0	0.0	0.0	
						37	9				
0.2	21.15	21.93	32.69	0.0	294.2	37121.	11767.	0.0	0.0	0.0	

		ı	1	1					1		
						11	79				
0.2	18.63	21.57	35.21	0.0	0.0	43615.	16180.	0.0	0.0	0.0	
						07	97				
0.4	20.15	20.94	28.13	0.0	161.81	31814.	6472.2	0.0	0.0	0.0	
						73	9				
0.2	19.61	20.4	0.0	0.0	117.68	0.0	4707.1	0.0	0.0	0.0	
							2				
0.6	17.98	18.77	0.0	0.0	46.09	0.0	4123.1	0.0	0.0	0.0	
							6				
0.2	18.41	19.2	0.0	0.0	58.84	0.0	4593.4	0.0	0.0	0.0	
0.2	18.63	21.57	29.68	0.0	0.0	54906.	10296.	0.0	0.0	0.0	
						45	98				
0.2	18.08	18.86	0.0	0.0	49.03	0.0		0.0	0.0	0.0	
							1				
0.2	18.63	21.57	30.96	0.0	0.0	66587.	14709.	0.0	0.0	0.0	
						16	97				
0.2	20.96	21.74	27.47	0.0	264.78	51182.	10591.	0.0	0.0	0.0	
0.2	2000		_,,,,	0.0	2011,0	87	01	0.0	0.0	0.0	
0.2	18.05	18.84	0.0	0.0	49.03	0.0		0.0	0.0	0.0	
0.2	10.05	10.01	0.0	0.0	17.03	0.0	12 / 0.2	0.0	0.0	0.0	
0.2	18.63	21.57	28.34	0.0	0.0	60607.	10296	0.0	0.0	0.0	
0.2	10.05	21.37	20.31	0.0	0.0	06	98	0.0	0.0	0.0	
0.4	20.79	21.58	26.13	0.0	240.26	50987.		0.0	0.0	0.0	
0.4	20.77	21.30	20.13	0.0	240.20	71	6	0.0	0.0	0.0	
0.2	18.36	19.14	0.0	0.0	58.84		4593.4	0.0	0.0	0.0	
0.2	19.08	19.86	20.65	0.0		26779.		0.0	0.0	0.0	
0.2	19.00	19.60	20.03	0.0	88.20	02	4301.2	0.0	0.0	0.0	
0.2	17.04	17.83	0.0	0.0	29.42		3092.9	0.0	0.0	0.0	
0.2	17.04	17.65	0.0	0.0	23.42	0.0	3092.9	0.0	0.0	0.0	
0.2	20.82	21.61	25.78	0.0	245 17	52987.		0.0	0.0	0.0	
0.2	20.82	21.01	23.76	0.0	243.17	32987. 29	9800.4	0.0	0.0	0.0	
0.2	18.63	21.57	30.22	0.0	0.0	82742.	17651.	0.0	0.0	0.0	
0.2	16.03	21.37	30.22	0.0	0.0			0.0	0.0	0.0	
0.2	21.00	22.77	20.16	0.0	400.22	77510	97	0.0	0.0	0.0	
0.2	21.98	22.77	29.16	0.0	490.33	77519.		0.0	0.0	0.0	
0.2	10.63	21.57	20.0	0.0	0.0	6	99	0.0	0.0	0.0	
0.2	18.63	21.57	30.8	0.0	0.0	89202.		0.0	0.0	0.0	
0.2	10.02	20.62	0.0	0.0	127.20	27	96	0.0	0.0	0.0	
0.2	19.83	20.62	0.0	0.0	137.29	0.0	_	0.0	0.0	0.0	
							4				
0.2	18.63	21.57	31.29	0.0	0.0	94734.	23535.	0.0	0.0	0.0	
						2	96				
0.6	18.63	21.57	28.63	0.0	0.0	80708.	14709.	0.0	0.0	0.0	

							73	97				
0	.2	21.61	22.39	27.27	0.0	392.27	73209.	15690.	0.0	0.0	0.0	
							59	39				

Carichi di progetto agenti sulla fondazione

Nr.	Nome	Pressione	N	Mx	My	Hx	Ну	Tipo
	combinazi	normale di	[kN]	$[kN \cdot m]$	$[kN \cdot m]$	[kN]	[kN]	
	one	progetto						
		$[kN/m^2]$						
1	A1+M1+	98.61	0.00	0.00	0.00	0.00	0.00	Progetto
	R3							
2	SISMA	98.61	0.00	0.00	0.00	0.00	0.00	Progetto
3	S.L.E.	98.61	0.00	0.00	0.00	0.00	0.00	Servizio
4	S.L.D.	98.61	0.00	0.00	0.00	0.00	0.00	Servizio

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzion	Tangente	Coesione	Coesione	Peso	Peso unità	Coef. Rid.	Coef.Rid.
	e Sismica	angolo di	efficace	non	Unità	volume	Capacità	Capacità
		resistenza		drenata	volume in	copertura	portante	portante
		al taglio			fondazion		verticale	orizzontal
					e			e
1	No	1	1	1	1	1	2.3	1.1
2	Si	1	1	1	1	1	1.8	1.1
3	No	1	1	1	1	1	1	1
4	No	1	1	1	1	1	1	1

CARICO LIMITE FONDAZIONE COMBINAZIONE...SISMA

Autore: HANSEN (1970)

Carico limite [Qult] 295.83 kN/m²
Resistenza di progetto[Rd] 164.35 kN/m²
Tensione [Ed] 98.61 kN/m²

Fattore sicurezza [Fs=Qult/Ed] 3 Condizione di verifica [Ed<=Rd] Verificata

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982)

Costante di Winkler 11833.34 kN/m³

A1+M1+R3

Autore: HANSEN (1970) (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	14.6 kN/m^3	
Peso unità di volume saturo	15.0 kN/m^3	
Angolo di attrito	27.52 °	
Coesione	0.0 kN/m^2	
Fattore [Nq]	13.97	
Fattore [Nc]	24.89	
	10.13	
Fattore [Ng]		
Fattore forma [Sc]	1.56	
Fattore profondità [Dc]	1.03	
Fattore inclinazione carichi [Ic]	1.0	
Fattore inclinazione pendio [Gc]	1.0	
Fattore inclinazione base [Bc]	1.0	
Fattore forma [Sq]	1.52	
Fattore profondità [Dq]	1.02	
Fattore inclinazione carichi [Iq]	1.0	
Fattore inclinazione pendio [Gq]	1.0	
Fattore inclinazione base [Bq]	1.0	
Fattore forma [Sg]	0.6	
Fattore profondità [Dg]	1.0	
Fattore inclinazione carichi [Ig]	1.0	
Fattore inclinazione pendio [Gg]	1.0	
Fattore inclinazione base [Bg]	1.0	
Fattore correzione sismico inerziale [z	q] 1.0	
Fattore correzione sismico inerziale [z	[g] 1.0	
Fattore correzione sismico inerziale [z		
Carico limite	330.39 kN/m ²	
	143.65 kN/m ²	
Resistenza di progetto	143.03 KIN/M"	
Condizione di verifica [Ed<=Rd] \	/erificata	
Autore: TERZAGHI (1955) (Condiz	ione drenata)	

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	14.6 kN/m^3	
Peso unità di volume saturo	15.0 kN/m^3	
Angolo di attrito	27.52 °	

Coesione	$0.0~\mathrm{kN/m^2}$	
Fattore [Nq]	16.86	
Fattore [Nc]	30.44	
Fattore [Ng]	14.17	
Fattore forma [Sc]	1.0	
Fattore forma [Sg]	1.0	
Fattore correzione sismico inerzial	e [zq] 1.0	
Fattore correzione sismico inerzial	e [zg] 1.0	
Fattore correzione sismico inerzial	e [zc] 1.0	
Carico limite	522.96 kN/m ²	
Resistenza di progetto	227.37 kN/m^2	
Condizione di verifica [Ed<=Rd]	Verificata	
Autore: MEYERHOF (1963) (Co	ndizione drenata)	
PARAMETRI GEOTECNICI DI O	CALCOLO	
Peso unità di volume	14.6 kN/m³	
Peso unità di volume saturo	15.0 kN/m^3	

PARAMETRI GEOTECNICI DI CALCOLO	

Peso unità di volume	14.6 kN/m ³
Peso unità di volume saturo	15.0 kN/m^3
Angolo di attrito	27.52 °
Coesione	0.0 kN/m^2
Fattore [Nq]	13.97
Fattore [Nc]	24.89
Fattore [Ng]	10.32
Fattore forma [Sc]	1.54
Fattore profondità [Dc]	1.03
Fattore inclinazione carichi [Ic]	1.0
Fattore forma [Sq]	1.27
Fattore profondità [Dq]	1.01
Fattore inclinazione carichi [Iq]	1.0
Fattore forma [Sg]	1.27
Fattore profondità [Dg]	1.01
Fattore inclinazione carichi [Ig]	1.0
Fattore correzione sismico inerziale [zq]	1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0

Carico limite 506.8 kN/m^2 Resistenza di progetto 220.35 kN/m²

Condizione di verifica [Ed<=Rd] Verificata

Autore: VESIC (1975) (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	14.6 kN/m ³
Peso unità di volume saturo	15.0 kN/m ³
	27.52 °
Angolo di attrito Coesione	0.0kN/m^2
Coesione	0.0 kN/III ²
Fattore [Nq]	13.97
Fattore [Nc]	24.89
Fattore [Ng]	15.6
Fattore forma [Sc]	1.56
Fattore profondità [Dc]	1.03
Fattore inclinazione carichi [Ic]	1.0
Fattore inclinazione pendio [Gc]	1.0
Fattore inclinazione base [Bc]	1.0
Fattore forma [Sq]	1.52
Fattore profondità [Dq]	1.02
Fattore inclinazione carichi [Iq]	1.0
Fattore inclinazione pendio [Gq]	1.0
Fattore inclinazione base [Bq]	1.0
Fattore forma [Sg]	0.6
Fattore profondità [Dg]	1.0
Fattore inclinazione carichi [Ig]	1.0
Fattore inclinazione pendio [Gg]	1.0
Fattore inclinazione base [Bg]	1.0
Fattore correzione sismico inerziale [zq]	1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0

Carico limite $422.87 \ kN/m^2$ Resistenza di progetto 183.86 kN/m^2

Condizione di verifica [Ed<=Rd] Verificata

Autore: Brinch - Hansen 1970 (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	14.6 kN/m^3
Peso unità di volume saturo	15.0 kN/m^3
Angolo di attrito	27.52 °
Coesione	0.0 kN/m^2
E # DI 1	12.07
Fattore [Nq]	13.97
Fattore [Nc]	24.89
Fattore [Ng]	13.51
Fattore forma [Sc]	1.5
Fattore profondità [Dc]	1.03
Fattore inclinazione carichi [Ic]	1.0
Fattore inclinazione pendio [Gc]	1.0
Fattore inclinazione base [Bc]	1.0
Fattore forma [Sq]	1.46
Fattore profondità [Dq]	1.02
Fattore inclinazione carichi [Iq]	1.0
Fattore inclinazione pendio [Gq]	1.0
Fattore inclinazione base [Bq]	1.0
Fattore forma [Sg]	0.7
Fattore profondità [Dg]	1.0
Fattore inclinazione carichi [Ig]	1.0
Fattore inclinazione pendio [Gg]	1.0
Fattore inclinazione base [Bg]	1.0
Fattore correzione sismico inerziale [zq] 1.0
Fattore correzione sismico inerziale [zg] 1.0
Fattore correzione sismico inerziale [zc] 1.0
Carico limite	419.56 kN/m ²
Resistenza di progetto	182.42 kN/m ²
1 8	
Condizione di verifica [Ed<=Rd] Ve	erificata

SISMA

Autore: HANSEN (1970) (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	14.6 kN/m^3	
Peso unità di volume saturo	15.0 kN/m^3	
Angolo di attrito	27.52 °	
Coesione	0.0 kN/m^2	
======================================	13.97	
Fattore [Nc]	24.89	
Fattore [Ng]	10.13	
Fattore forma [Sc]	1.56	
Fattore profondità [Dc]	1.03	
Fattore inclinazione carichi [Ic]	1.0	
Fattore inclinazione pendio [Gc]	1.0	
Fattore inclinazione base [Bc]	1.0	
Fattore forma [Sq]	1.52	
Fattore profondità [Dq]	1.02	
Fattore inclinazione carichi [Iq]	1.0	
Fattore inclinazione pendio [Gq]	1.0	
Fattore inclinazione base [Bq]	1.0	
Fattore forma [Sg]	0.6	
Fattore profondità [Dg]	1.0	
Fattore inclinazione carichi [Ig]	1.0	
Fattore inclinazione pendio [Gg]	1.0	
Fattore inclinazione base [Bg]	1.0	
Fattore correzione sismico inerziale [z	zq] 0.9	
Fattore correzione sismico inerziale [z	zg] 0.89	
Fattore correzione sismico inerziale [z	zc] 0.96	
======================================	295.83 kN/m ²	
Resistenza di progetto	164.35 kN/m ²	
resistenza di progetto	101.33 KI WIII	
Condizione di verifica [Ed<=Rd]	Verificata	
Condizione di verifica [Ed<=Rd]		===

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume 14.6 kN/m^3 Peso unità di volume saturo 15.0 kN/m^3

Angolo di attrito	27.52 °				
Coesione	0.0 kN/m^2				
P. C. D. I.	16.06	==			
Fattore [Nq]	16.86				
Fattore [Nc]	30.44				
Fattore [Ng]	14.17				
Fattore forma [Sc]	1.0				
Fattore forma [Sg]	1.0				
Fattore correzione sismico inerziale [zq] 0.9					
Fattore correzione sismico inerziale [zg] 0.89					
Fattore correzione sismico inerziale [zc] 0.96					
Carico limite	467.17 kN/m ²	==			
	259.54 kN/m ²				
Resistenza di progetto	239.34 KIN/III ⁻				
Condizione di verifica [Ed<=Rd]	Verificata				

Autore: MEYERHOF (1963) (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	14.6 kN/m^3				
Peso unità di volume saturo	15.0 kN/m^3				
Angolo di attrito	27.52 ° 0.0 kN/m²				
Coesione					
Fattore [Nq]	13.97				
Fattore [Nc]	24.89				
Fattore [Ng]	10.32				
Fattore forma [Sc]	1.54				
Fattore profondità [Dc]	1.03				
Fattore inclinazione carichi [Ic]	1.0				
Fattore forma [Sq]	1.27				
Fattore profondità [Dq]	1.01				
Fattore inclinazione carichi [Iq]	1.0				
Fattore forma [Sg]	1.27				
Fattore profondità [Dg]	1.01				
Fattore inclinazione carichi [Ig]	1.0				
Fattore correzione sismico inerziale [zq]	0.9				
Fattore correzione sismico inerziale [zg]	0.89				
Fattore correzione sismico inerziale [zc]	0.96				

Carico limite 452.84 kN/m^2 Resistenza di progetto 251.58 kN/m^2

Condizione di verifica [Ed<=Rd] Verificata

Autore: VESIC (1975) (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	14.6 kN/m^3
Peso unità di volume saturo	15.0 kN/m^3
Angolo di attrito	27.52 °
Coesione	0.0 kN/m^2
Fattore [Nq]	13.97
Fattore [Nc]	24.89
Fattore [Ng]	15.6
Fattore forma [Sc]	1.56
Fattore profondità [Dc]	1.03
Fattore inclinazione carichi [Ic]	1.0
Fattore inclinazione pendio [Gc]	1.0
Fattore inclinazione base [Bc]	1.0
Fattore forma [Sq]	1.52
Fattore profondità [Dq]	1.02
Fattore inclinazione carichi [Iq]	1.0
Fattore inclinazione pendio [Gq]	1.0
Fattore inclinazione base [Bq]	1.0
Fattore forma [Sg]	0.6
Fattore profondità [Dg]	1.0
Fattore inclinazione carichi [Ig]	1.0
Fattore inclinazione pendio [Gg]	1.0
Fattore inclinazione base [Bg]	1.0
Fattore correzione sismico inerziale [zq]	0.9
Fattore correzione sismico inerziale [zg]	0.89
Fattore correzione sismico inerziale [zc]	0.96

Carico limite 378.26 kN/m^2 Resistenza di progetto 210.15 kN/m^2

Condizione di verifica [Ed<=Rd] Verificata

Autore: Brinch - Hansen 1970 (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	14.6 kN/m^3
Peso unità di volume saturo	15.0 kN/m^3
Angolo di attrito	27.52 °
Coesione	0.0 kN/m ²
Fattore [Nq]	13.97
Fattore [Nc]	24.89
Fattore [Ng]	13.51
Fattore forma [Sc]	1.5
Fattore profondità [Dc]	1.03
Fattore inclinazione carichi [Ic]	1.0
Fattore inclinazione pendio [Gc]	1.0
Fattore inclinazione base [Bc]	1.0
Fattore forma [Sq]	1.46
Fattore profondità [Dq]	1.02
Fattore inclinazione carichi [Iq]	1.0
Fattore inclinazione pendio [Gq]	1.0
Fattore inclinazione base [Bq]	1.0
Fattore forma [Sg]	0.7
Fattore profondità [Dg]	1.0
Fattore inclinazione carichi [Ig]	1.0
Fattore inclinazione pendio [Gg]	1.0
Fattore inclinazione base [Bg]	1.0
Fattore correzione sismico inerziale [zq] 0.9
Fattore correzione sismico inerziale [zg] 0.89
Fattore correzione sismico inerziale [zc] 0.96
Carico limite	375.26 kN/m ²
Resistenza di progetto	208.48 kN/m ²

Condizione di verifica [Ed<=Rd] Verificata

6.3 VERIFICA ALLA LIQUEFAZIONE

Da un punto di vista litologico, i terreni del primo sottosuolo in tutta l'area di interesse risultano caratterizzati da una certa omogeneità e tipica di un ambiente di pianura alluvionale nel quale si alternano sia spazialmente che temporalmente ambienti deposizionali tra loro collegati.

Sostanzialmente si evidenzia una componente argillosa-limosa predominante nei primi 7,0 m di profondità seguita da un livello sabbioso intervallato da orizzonti più fini, sino a 20 m dal p.d.c..

I livelli limo-sabbiosi e sabbiosi individuati risultano essere in falda e pertanto potenzialmente liquefacibili.

La falda è stata considerata a – 2,0 metri nelle condizioni di soggiacenza minima.

Di conseguenza è stata effettuata un'analisi per verificare la possibilità di occorrenza di fenomeni di liquefazione attraverso un'analisi semplificata in condizioni di free-field valutando, ad ogni quota z del deposito compresa nei primi 20 m, la suscettibilità alla liquefazione attraverso un coefficiente di sicurezza F_L

dato dal rapporto tra la resistenza disponibile alla liquefazione (CRR) e sollecitazione indotta dall'azione sismica (rapporto di tensione ciclica CSR) mediante i metodi riportati di seguito ed indicati dalle "Linee Guida AGI – Aspetti geotecnici della progettazione in zona sismica".

Per quanto concerne la magnitudo, come riportato nei capitoli precedenti, si è fatto riferimento ad un valore massimo pari a 6.50.

Per quel che concerne invece l'accelerazione massima attesa in superficie nell'area in esame, le analisi effettuate secondo quanto stabilito dalle NTC 2008 e dalla Circolare n°617 del Ministero delle Infrastrutture e dei Trasporti del 2 febbraio 2009 (considerando una classe d'uso 2 "e pertanto un Coefficiente Cu pari a 1 e un suolo di tipo C) hanno portato ad un valore pari a 0.15 g.

Il coefficiente di sicurezza F_L è stato calcolato a partire dalla seguente formula:

$$F_L = \frac{CRR}{CSR}MSF$$

Il rapporto di tensione ciclica CSR, ad una determinata profondità, può essere valutato attraverso l'espressione di Seed e Idriss, 1971 riportata di seguito:

$$CSR = 0.65 \frac{a_{\text{max}}}{g} \frac{\sigma_{v0}}{\sigma'_{v0}} R_{\text{d}}$$

Dove:

 a_{max} : accelerazione di picco al piano campagna del terremoto di progetto;

g: accelerazione di gravità;

 σ_{v0} : tensione totale verticale alla profondità considerata;

 σ'_{v_0} : tensione efficace verticale alla profondità considerata;

 R_{d} : coefficiente riduttivo dell'azione sismica per valutare la deformabilità del sottosuolo;

Il coefficiente riduttivo dell'azione sismica R_d si può ricavare, per profondità del piano campagna inferiori a 20 m, mediante la seguente espressione (Idriss e Boulanger, 2004):

$$R_{d} = \exp\left[\left(-1.012 - 1.126\sin\left(\frac{z}{11.73} + 5.133\right)\right) + \left(0.106 + 0.118\sin\left(\frac{z}{11.28} + 5.142\right)\right)M\right]$$

Essendo z la profondità dal piano campagna espressa in metri ed M la magnitudo di momento dell'evento sismico atteso.

Poiché le procedure semplificate sono state elaborate sulla base di osservazioni sul comportamento dei depositi durante eventi sismici con magnitudo di momento M pari a 7.5, per eventi di magnitudo diversa occorre ridurre il carico sismico a quello equivalente di un terremoto di magnitudo 7.5 $(CSR)_{M=7.5}$ attraverso la seguente relazione:

$$CSR_{M=7.5} = \frac{CSR}{MSF}$$

In cui MSF è un fattore di scala per la magnitudo che si può ricavare dall'espressione riportata di seguito (Idriss e Boulanger, 2004):

$$MSF = 6.9 \exp\left(\frac{-M}{4}\right) - 0.058$$

Per quel che concerne invece la valutazione del rapporto di resistenza ciclica CRR, la resistenza penetrometrica, q_c , ricavata dalle indagine penetrometriche statiche CPT, deve essere ricondotta ad un valore normalizzato, q_{c1N} , attraverso la seguente espressione:

$$q_{c1N} = C_Q \frac{q_c}{p_c}$$

Dove p_{a} (pressione atmosferica pari a 100kPa) e q_{c} espressa nella stessa unità di misura.

Il coefficiente $C_{\mathcal{Q}}$ (fattore correttivo per tener conto dell'influenza della pressione verticale efficace) può essere ricavato per via iterativa dalla seguente espressione (Boulanger e Idriss, 2004):

anger e Idriss, 2004):
$$C_{Q} = \left(\frac{p_{a}}{\sigma'_{v}}\right)^{1.338 - 0.294(q_{c1N})^{0.264}}$$

Tale coefficiente non deve superare il valore di 1.7.

Dal valore di (q_{CIN}) è possibile ottenere la resistenza alla liquefazione, per eventi sismici di magnitudo di momento pari a M=7.5, mediante la seguente espressione valida per sabbie pulite (Idriss e Boulanger, 2004).

CRR =
$$\exp \left[\frac{q_{c1N}}{540} + \left(\frac{q_{c1N}}{67} \right)^2 - \left(\frac{q_{c1N}}{80} \right)^3 + \left(\frac{q_{c1N}}{114} \right)^4 - 3 \right]$$

Per materiali con frazione fine non trascurabile invece, per ottenere la resistenza alla liquefazione CRR è stata utilizzata la seguente equazione (Robertson e Wride, 1997):

CRR = 0.883
$$\left[\frac{(q_{c1N})_{cs}}{1000}\right]$$
 + 0.05 se $(q_{c1N})_{cs}$ < 50
CRR = 93 $\left[\frac{(q_{c1N})_{cs}}{1000}\right]^3$ + 0.08 se $(q_{c1N})_{cs}$ > 50

Nelle equazioni sopra riportate appare il valore $(q_{c1N})_{cs}$.

Infatti, nel caso di materiali con frazione fine non trascurabile la resistenza penetrometrica normalizzata q_{c1N} deve essere ricondotta ad un valore per sabbie pulite $(q_{c1N})_{cs}$ mediante la seguente espressione (Robertson e Wride, 1998):

$$(q_{c1N})_{cs} = K_c * q_{c1N}$$

Il fattore correttivo K_c è dato da:

$$K_c = 1.0$$
 per $I_c \le 1.64$

$$K_c = -17.88 + 33.75I_c - 21.63I_c^2 + 5.581I_c^3 - 0.4031I_c^4$$
 per $I_c > 1.64$

Il parametro di comportamento del terreno I_c da inserire nelle equazioni sopra riportate è una funzione della resistenza alla punta q_c e della resistenza laterale del manicotto f_s misurate dalle prove penetrometriche CPT.

In particolare:

$$I_c = \left[(3.47 - \log Q)^2 + (1.22 + \log F)^2 \right]^{0.5}$$

con:

$$Q = \left[\left(\frac{\left(q_c - \sigma_{vo} \right)}{P_a} \right) \right] \left[\left(\frac{P_a}{\sigma'_{v0}} \right)^n \right]$$

resistenza penetrometrica normalizzata

$$F = \left[\frac{f_s}{(q_c - \sigma_{vo})} \right] * 100\%$$

resistenza laterale normalizzata

Da quanto sopra, il 1° dato da ottenere e l'Indice I_C e relativo esponente di sforzo (n), che si ottengono procedendo per steps successivi:

- 1) se $I_C > 2,6$ ed n=1 allora il terreno è classificabile coesivo quindi non liquefacibile ed il calcolo è terminato;
- 2) se I_C <2,6 il suolo può essere di natura granulare e si ripete il calcolo con n= 0,5;
- 3) se dal ricalcolo del punto 2 $I_C > 2,6$ il suolo è classificabile come non coesivo ed il valore di I_C sarà utilizzato nel calcolo di q_{cIN}
- 4) se dal ricalcolo del punto 3 $I_C > 2,6$ il suolo è classificabile come limoso ed eventualmente coesivo e si dovrà ripetere il calcolo con n= 0,7 ed il valore del nuovo IC sarà utilizzato nel calcolo di q_{c1N}
- 5) se dal ricalcalo del punto 4 I_C >2,6 si utilizzerà come q_{c1N} il valore di 2_{qc} .

Nel caso in esame sono stati considerati, come sabbie pulite, tutti i depositi rilevati dall'indagine penetrometrica da 4 a 14 m dal p.d.c..

Ottenuti i valori di CSR e di CRR è possibile valutare il coefficiente di sicurezza F_L .

Come previsto da tale normativa se $F_L > 1$ si possono escludere fenomeni di liquefazione mentre se $F_L < 1$ e possibile che avvengano fenomeni di liquefazione.

Ottenuto il parametro F_L e possibile operare una stima probabilistica della possibilita che avvenga la liquefazione, utilizzando la seguente relazione proposta dalla normativa:

$$I_L = \int_0^{20} F(z)w(z)dz$$

In cui z è la profondità dal piano campagna in metri e w(z) = 10-0.5z.

Ad una data quota z il fattore F(z) vale:

$$F = 1 - F_L$$
 se $F_L \le 1$
 $F = 0$ se $F_L > 1$

In particolare, come previsto dalla normativa suddetta, il valore dell'indice del potenziale di liquefazione I_L valutato porta alla definizione del rischio di liquefazione che è: basso se $0 < I_L \le 5$; elevato se $5 < I_L \le 15$; estremamente elevato se $I_L > 15$.

Come riassunto nella tabella seguente si sono ottenuti valori molto bassi dell'indice di potenziale di liquefazione I_L (o di liquefacibilità) con il rischio di liquefazione che può essere considerato pertanto molto basso.

VERIFICA A LIQUEFAZIONE - Metodo del C.N.R. - GNDT Da Seed e Idriss

Svo: Pressione totale di confinamento; S'vo: Pressione efficace di confinamento; T: Tensione tangenziale ciclica; R: Resistenza terreno alla liquefazione; Fs: Coefficiente di sicurezza

Strato	Prof. Strato (m)	Nspt	Nspt'	Svo (kN/m²)	S'vo (kN/m²)	Т	R	Fs	Condizione:
2	0.80	13.00	28.479	7.453	7.453	0.033	1.504	45.02	Livello non liquefacibile
3	1.00	20.00	41.695	11.322	11.322	0.033	18.745	563.04	Livello non liquefacibile
4	1.80	95.00	170.639	27.110	24.168	0.037	355292.80 0	9630904.00	Livello non liquefacibile
5	2.00	50.00	87.589	31.425	26.521	0.039	3336.074	85875.83	Livello non liquefacibile
6	2.20	100.00	170.950	35.740	28.875	0.040	359857.00 0	8895216.00	Livello non liquefacibile
7	2.40	60.00	100.153	40.055	31.228	0.042	8525.399	203994.60	Livello non liquefacibile
8	2.60	40.00	65.357	44.173	33.386	0.042	429.959	10004.33	Livello non liquefacibile
9	3.00	45.00	70.284	52.803	38.093	0.045	714.924	15978.04	Livello non liquefacibile
10	3.20	70.00	106.972	57.118	40.446	0.043	13519.440	297516.60	Livello non liquefacibile
11	3.40	40.00	59.942	61.237	42.604	0.043	234.824	5093.25	Livello non liquefacibile
11	3.60	5.00	7.388	64.775	44.181	0.046	0.113	2.41	Livello non liquefacibile
13	3.80	40.00	57.896	69.090	46.534	0.047	184.219	3892.82	Livello non liquefacibile
13	4.20	6.00	8.440	76.350	49.872	0.047	0.121	2.50	Livello non liquefacibile
15	4.20	7.00	9.708	80.005	51.566	0.048	0.121	2.66	Livello non liquefacibile
16	4.60	7.00	9.573	83.660		0.049	0.130	2.62	Livello non liquefacibile
17	4.80	25.00	33.542	87.975	53.259 55.612	0.049	4.269	86.04	
18	5.00			91.992				19.39	Livello non liquefacibile
18	6.00	20.00 82.00	26.397 99.003	113.566	57.668 69.435	0.050 0.050	0.967	156305.00	Livello non liquefacibile
							7863.209		Livello non liquefacibile
20 21	6.20	60.00	71.227	117.881	71.789	0.050 0.051	784.792	15589.88	Livello non liquefacibile
21	6.60	20.00 10.00	23.068	125.909 129.680	75.894		0.493	9.76	Livello non liquefacibile
	6.80		11.391		77.704	0.051	0.143	2.81	Livello non liquefacibile
23	7.00	8.00	9.007	133.371	79.433	0.051	0.125	2.47	Livello non liquefacibile
24	7.20	11.00	12.232	137.175	81.276	0.051	0.149	2.93	Livello non liquefacibile
25	7.40	12.00	13.179	141.010	83.149	0.051	0.157	3.08	Livello non liquefacibile
26 27	7.60	7.00	7.604	144.648	84.826	0.051	0.115	2.25	Livello non liquefacibile
	7.80	40.00	42.795	148.963	87.180	0.051	22.442	440.07	Livello non liquefacibile
28	8.20	20.00	20.849	156.986	91.280	0.051	0.334	6.56	Livello non liquefacibile
29	8.60	85.00	86.279	165.223	95.595	0.051	3002.247	59002.95	Livello non liquefacibile
30	9.00	120.00	118.413	173.853	100.302	0.051	27531.760	543284.00	Livello non liquefacibile
31	9.20	100.00	97.433	177.972	102.459	0.051	7030.879	138926.30	Livello non liquefacibile
32	9.40	100.00	96.111	182.286	104.812	0.050	6389.721	126540.70	Livello non liquefacibile
33	9.60	70.00	66.332	186.721	107.285	0.050	476.887	9470.49	Livello non liquefacibile
34	10.00	61.00	56.420	194.958	111.600	0.050	153.800	3064.38	Livello non liquefacibile
35	10.40	72.00	64.899	203.588	116.307	0.050	409.333	8197.31	Livello non liquefacibile
36	10.60	40.00	35.615	207.833	118.591	0.050	6.379	128.05	Livello non liquefacibile
37	10.80	70.00	61.553	212.148	120.944	0.050	282.684	5689.67	Livello non liquefacibile
38	11.00	90.00	78.170	216.463	123.298	0.050	1504.568	30365.49	Livello non liquefacibile
39	12.00	114.00	93.295	238.037	135.065	0.049	5189.071	106232.50	Livello non liquefacibile

7. CONCLUSIONI

Ubicazione

L'area è situata in comune di fg. N. 908 m.li n. 988, 4556, 3407, 4224 del Comune di Cividate al Piano.

<u>Sismicità</u>

Ai sensi della DGR 11/07/2014 n. X/2129 l'area, come tutto il territorio comunale è compresa in Zona sismica 3 e più dettagliatamente denominata Z4a "Zona di amplificazione stratigrafica". Ai fini della definizione dell'azione sismica di progetto il terreno di fondazione relativo all'orizzonte A può essere classificato alla categoria "C" di cui al punto 3.2.2 delle NTC.

La condizione topografica dell'area in esame, si configura nella categoria topografica di tipo T1 di cui al punto 3.2.2 delle NTC.

<u>Indagini</u>

La definizione dell'assetto stratigrafico e della fattibilità geotecnica dei terreni è stata conseguita attraverso la realizzazione di n. 1 prova penetrometrica dinamica, oltre ad un'indagine sismica di tipo hwsr.

Litologia e litostratimetria

Dalle indagini eseguite, emerge un assetto litostratigrafico caratterizzato da:

- 0 4,2 m: ghiaia sabbiosa e limo
- 4,2-5,2 m: sabbia
- 5,2 7,4 m: sabbia ghiaiosa

Nell'ipotesi di fondazioni dirette, la porzione di terreno che governerà la capacità portante è rappresentato dall'orizzonte superficiale con un angolo d'attrito pari a 27,52° (litozona n. 1 del profilo geotecnico di riferimento).

<u>Idrogeologia</u>

Le misure dei livelli statici nei fori di sondaggio non hanno fornito la presenza della superficie piezometrica alla profondità di 5,0 metri dal p.c. Tale livello è da considerarsi come livello di progetto.

Carichi ammissibili

Il carico della fondazione superficiale (tipo a trave rovescia), come esplicato al cap. 6.2, risulta come segue:

CARICO LIMITE FONDAZIONE COMBINAZIONE...A1+M1+R3

Autore: Brinch - Hansen 1970

Carico limite [Qult] 280.84 kN/m² Resistenza di progetto[Rd] 122.11 kN/m² Tensione [Ed] 138.19 kN/m²

Fattore sicurezza [Fs=Qult/Ed] 2.03 Condizione di verifica [Ed<=Rd]Non verificata

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982)

Costante di Winkler 11233.77 kN/m³

Cividale al Piano, 30

giugno 2022

Firmato digitalmente Dott. geol. Simone Lucchini